Properties

Label 285.2.i
Level 285285
Weight 22
Character orbit 285.i
Rep. character χ285(106,)\chi_{285}(106,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 2424
Newform subspaces 66
Sturm bound 8080
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 285=3519 285 = 3 \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 285.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 19 19
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 6 6
Sturm bound: 8080
Trace bound: 22
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(285,[χ])M_{2}(285, [\chi]).

Total New Old
Modular forms 88 24 64
Cusp forms 72 24 48
Eisenstein series 16 0 16

Trace form

24q+4q310q42q6+8q712q9+2q10+8q1124q12+12q14+4q156q1612q17+4q198q21+12q2312q25+40q268q27+4q99+O(q100) 24 q + 4 q^{3} - 10 q^{4} - 2 q^{6} + 8 q^{7} - 12 q^{9} + 2 q^{10} + 8 q^{11} - 24 q^{12} + 12 q^{14} + 4 q^{15} - 6 q^{16} - 12 q^{17} + 4 q^{19} - 8 q^{21} + 12 q^{23} - 12 q^{25} + 40 q^{26} - 8 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(285,[χ])S_{2}^{\mathrm{new}}(285, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
285.2.i.a 285.i 19.c 22 2.2762.276 Q(3)\Q(\sqrt{-3}) None 285.2.i.a 2-2 1-1 11 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(2+2ζ6)q2+(1+ζ6)q32ζ6q4+q+(-2+2\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots
285.2.i.b 285.i 19.c 22 2.2762.276 Q(3)\Q(\sqrt{-3}) None 285.2.i.b 00 1-1 1-1 44 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+ζ6)q3+2ζ6q4+(1+ζ6)q5+q+(-1+\zeta_{6})q^{3}+2\zeta_{6}q^{4}+(-1+\zeta_{6})q^{5}+\cdots
285.2.i.c 285.i 19.c 22 2.2762.276 Q(3)\Q(\sqrt{-3}) None 285.2.i.c 22 11 11 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(22ζ6)q2+(1ζ6)q32ζ6q4+q+(2-2\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots
285.2.i.d 285.i 19.c 44 2.2762.276 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) None 285.2.i.d 2-2 22 22 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+β1β2)q2+(1+β2)q3+q+(-1+\beta _{1}-\beta _{2})q^{2}+(1+\beta _{2})q^{3}+\cdots
285.2.i.e 285.i 19.c 44 2.2762.276 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 285.2.i.e 11 2-2 22 1212 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β1q2+(1β3)q3+(β1+β2+)q4+q+\beta _{1}q^{2}+(-1-\beta _{3})q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots
285.2.i.f 285.i 19.c 1010 2.2762.276 Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots) None 285.2.i.f 11 55 5-5 44 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β1β2)q2β4q3+(1β3+)q4+q+(-\beta _{1}-\beta _{2})q^{2}-\beta _{4}q^{3}+(-1-\beta _{3}+\cdots)q^{4}+\cdots

Decomposition of S2old(285,[χ])S_{2}^{\mathrm{old}}(285, [\chi]) into lower level spaces

S2old(285,[χ]) S_{2}^{\mathrm{old}}(285, [\chi]) \simeq S2new(57,[χ])S_{2}^{\mathrm{new}}(57, [\chi])2^{\oplus 2}\oplusS2new(95,[χ])S_{2}^{\mathrm{new}}(95, [\chi])2^{\oplus 2}