Properties

Label 285.2.i
Level $285$
Weight $2$
Character orbit 285.i
Rep. character $\chi_{285}(106,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $6$
Sturm bound $80$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 6 \)
Sturm bound: \(80\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(285, [\chi])\).

Total New Old
Modular forms 88 24 64
Cusp forms 72 24 48
Eisenstein series 16 0 16

Trace form

\( 24 q + 4 q^{3} - 10 q^{4} - 2 q^{6} + 8 q^{7} - 12 q^{9} + 2 q^{10} + 8 q^{11} - 24 q^{12} + 12 q^{14} + 4 q^{15} - 6 q^{16} - 12 q^{17} + 4 q^{19} - 8 q^{21} + 12 q^{23} - 12 q^{25} + 40 q^{26} - 8 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(285, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
285.2.i.a 285.i 19.c $2$ $2.276$ \(\Q(\sqrt{-3}) \) None 285.2.i.a \(-2\) \(-1\) \(1\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots\)
285.2.i.b 285.i 19.c $2$ $2.276$ \(\Q(\sqrt{-3}) \) None 285.2.i.b \(0\) \(-1\) \(-1\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+2\zeta_{6}q^{4}+(-1+\zeta_{6})q^{5}+\cdots\)
285.2.i.c 285.i 19.c $2$ $2.276$ \(\Q(\sqrt{-3}) \) None 285.2.i.c \(2\) \(1\) \(1\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots\)
285.2.i.d 285.i 19.c $4$ $2.276$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 285.2.i.d \(-2\) \(2\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{1}-\beta _{2})q^{2}+(1+\beta _{2})q^{3}+\cdots\)
285.2.i.e 285.i 19.c $4$ $2.276$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 285.2.i.e \(1\) \(-2\) \(2\) \(12\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-1-\beta _{3})q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
285.2.i.f 285.i 19.c $10$ $2.276$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 285.2.i.f \(1\) \(5\) \(-5\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{2})q^{2}-\beta _{4}q^{3}+(-1-\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(285, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(285, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)