Defining parameters
Level: | \( N \) | \(=\) | \( 285 = 3 \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 285.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(285, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 88 | 24 | 64 |
Cusp forms | 72 | 24 | 48 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(285, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
285.2.i.a | $2$ | $2.276$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(-1\) | \(1\) | \(-4\) | \(q+(-2+2\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots\) |
285.2.i.b | $2$ | $2.276$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(-1\) | \(4\) | \(q+(-1+\zeta_{6})q^{3}+2\zeta_{6}q^{4}+(-1+\zeta_{6})q^{5}+\cdots\) |
285.2.i.c | $2$ | $2.276$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(1\) | \(1\) | \(-4\) | \(q+(2-2\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots\) |
285.2.i.d | $4$ | $2.276$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | None | \(-2\) | \(2\) | \(2\) | \(-4\) | \(q+(-1+\beta _{1}-\beta _{2})q^{2}+(1+\beta _{2})q^{3}+\cdots\) |
285.2.i.e | $4$ | $2.276$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | None | \(1\) | \(-2\) | \(2\) | \(12\) | \(q+\beta _{1}q^{2}+(-1-\beta _{3})q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
285.2.i.f | $10$ | $2.276$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(1\) | \(5\) | \(-5\) | \(4\) | \(q+(-\beta _{1}-\beta _{2})q^{2}-\beta _{4}q^{3}+(-1-\beta _{3}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(285, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(285, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)