Defining parameters
Level: | \( N \) | \(=\) | \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2850.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(1200\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2850, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 624 | 128 | 496 |
Cusp forms | 576 | 128 | 448 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2850, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2850, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2850, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(570, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1425, [\chi])\)\(^{\oplus 2}\)