Properties

Label 2880.1.r
Level $2880$
Weight $1$
Character orbit 2880.r
Rep. character $\chi_{2880}(559,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $4$
Newform subspaces $1$
Sturm bound $576$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2880.r (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 80 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(576\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2880, [\chi])\).

Total New Old
Modular forms 80 8 72
Cusp forms 16 4 12
Eisenstein series 64 4 60

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 4 q^{19} + 4 q^{49} - 4 q^{61} - 4 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2880.1.r.a 2880.r 80.k $4$ $1.437$ \(\Q(\zeta_{8})\) $D_{4}$ \(\Q(\sqrt{-15}) \) None 720.1.r.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{8}^{3}q^{5}+(-\zeta_{8}-\zeta_{8}^{3})q^{17}+(-1+\cdots)q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2880, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 3}\)