Properties

Label 2880.2.f
Level $2880$
Weight $2$
Character orbit 2880.f
Rep. character $\chi_{2880}(1729,\cdot)$
Character field $\Q$
Dimension $58$
Newform subspaces $24$
Sturm bound $1152$
Trace bound $25$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 24 \)
Sturm bound: \(1152\)
Trace bound: \(25\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\), \(17\), \(19\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2880, [\chi])\).

Total New Old
Modular forms 624 62 562
Cusp forms 528 58 470
Eisenstein series 96 4 92

Trace form

\( 58 q - 2 q^{5} + 2 q^{25} - 4 q^{29} - 4 q^{41} - 50 q^{49} - 12 q^{61} - 32 q^{85} + 12 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2880.2.f.a 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 480.2.f.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-2)q^{5}+2 i q^{7}-6 q^{11}+\cdots\)
2880.2.f.b 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 360.2.f.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-2)q^{5}+4 i q^{7}-4 q^{11}+4 i q^{13}+\cdots\)
2880.2.f.c 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 30.2.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-2)q^{5}+2 i q^{7}-2 q^{11}-6 i q^{13}+\cdots\)
2880.2.f.d 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 1440.2.f.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(i-2)q^{5}+4 i q^{13}-2 i q^{17}+(-4 i+3)q^{25}+\cdots\)
2880.2.f.e 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 30.2.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-2)q^{5}+2 i q^{7}+2 q^{11}+\cdots\)
2880.2.f.f 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 360.2.f.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-2)q^{5}+4 i q^{7}+4 q^{11}+\cdots\)
2880.2.f.g 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 480.2.f.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-2)q^{5}+2 i q^{7}+6 q^{11}+2 i q^{13}+\cdots\)
2880.2.f.h 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 40.2.c.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta-1)q^{5}+\beta q^{7}-4 q^{11}+2\beta q^{13}+\cdots\)
2880.2.f.i 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 40.2.c.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta-1)q^{5}+\beta q^{7}+4 q^{11}-2\beta q^{13}+\cdots\)
2880.2.f.j 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-5}) \) \(\Q(\sqrt{-15}) \) 45.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{5}+2\beta q^{17}-4q^{19}+4\beta q^{23}+\cdots\)
2880.2.f.k 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-5}) \) \(\Q(\sqrt{-15}) \) 45.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{5}+2\beta q^{17}+4q^{19}-4\beta q^{23}+\cdots\)
2880.2.f.l 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 60.2.d.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta+1)q^{5}+2\beta q^{7}-4 q^{11}+\cdots\)
2880.2.f.m 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 480.2.f.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta+1)q^{5}+2\beta q^{7}-2\beta q^{13}+\cdots\)
2880.2.f.n 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 160.2.c.a \(0\) \(0\) \(2\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-\beta+1)q^{5}+2\beta q^{13}-4\beta q^{17}+\cdots\)
2880.2.f.o 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 480.2.f.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta+1)q^{5}+2\beta q^{7}+2\beta q^{13}+8 q^{19}+\cdots\)
2880.2.f.p 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 60.2.d.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta+1)q^{5}+2\beta q^{7}+4 q^{11}+2\beta q^{17}+\cdots\)
2880.2.f.q 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 360.2.f.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+2)q^{5}+4 i q^{7}-4 q^{11}-4 i q^{13}+\cdots\)
2880.2.f.r 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 120.2.f.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+2)q^{5}+2 i q^{7}-2 q^{11}+2 i q^{13}+\cdots\)
2880.2.f.s 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 1440.2.f.a \(0\) \(0\) \(4\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(i+2)q^{5}-4 i q^{13}-2 i q^{17}+(4 i+3)q^{25}+\cdots\)
2880.2.f.t 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 120.2.f.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+2)q^{5}+2 i q^{7}+2 q^{11}+\cdots\)
2880.2.f.u 2880.f 5.b $2$ $22.997$ \(\Q(\sqrt{-1}) \) None 360.2.f.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+2)q^{5}+4 i q^{7}+4 q^{11}+\cdots\)
2880.2.f.v 2880.f 5.b $4$ $22.997$ \(\Q(i, \sqrt{5})\) None 480.2.f.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{5}+\beta _{2}q^{7}-\beta _{3}q^{11}+2\beta _{1}q^{13}+\cdots\)
2880.2.f.w 2880.f 5.b $4$ $22.997$ \(\Q(i, \sqrt{5})\) \(\Q(\sqrt{-5}) \) 160.2.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{3}q^{5}-\beta _{1}q^{7}+(-\beta _{1}+2\beta _{2})q^{23}+\cdots\)
2880.2.f.x 2880.f 5.b $8$ $22.997$ \(\Q(\zeta_{24})\) None 1440.2.f.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{4} q^{5}+\beta_{5} q^{7}+\beta_{6} q^{11}+\beta_{7} q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2880, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(960, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1440, [\chi])\)\(^{\oplus 2}\)