Defining parameters
Level: | \( N \) | \(=\) | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2880.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(25\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(17\), \(19\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2880, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 624 | 62 | 562 |
Cusp forms | 528 | 58 | 470 |
Eisenstein series | 96 | 4 | 92 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2880, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(960, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1440, [\chi])\)\(^{\oplus 2}\)