Properties

Label 2883.1
Level 2883
Weight 1
Dimension 266
Nonzero newspaces 6
Newform subspaces 17
Sturm bound 615040
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 2883=3312 2883 = 3 \cdot 31^{2}
Weight: k k = 1 1
Nonzero newspaces: 6 6
Newform subspaces: 17 17
Sturm bound: 615040615040
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(2883))M_{1}(\Gamma_1(2883)).

Total New Old
Modular forms 3066 1587 1479
Cusp forms 306 266 40
Eisenstein series 2760 1321 1439

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 206 0 60 0

Trace form

266q+q3+q4+2q7+q9+q12+2q13+q16+2q198q219q25+q278q289q36+2q378q398q43+q48+3q49+2q52+8q97+O(q100) 266 q + q^{3} + q^{4} + 2 q^{7} + q^{9} + q^{12} + 2 q^{13} + q^{16} + 2 q^{19} - 8 q^{21} - 9 q^{25} + q^{27} - 8 q^{28} - 9 q^{36} + 2 q^{37} - 8 q^{39} - 8 q^{43} + q^{48} + 3 q^{49} + 2 q^{52}+ \cdots - 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(2883))S_{1}^{\mathrm{new}}(\Gamma_1(2883))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
2883.1.b χ2883(962,)\chi_{2883}(962, \cdot) 2883.1.b.a 2 1
2883.1.b.b 2
2883.1.b.c 4
2883.1.d χ2883(1921,)\chi_{2883}(1921, \cdot) None 0 1
2883.1.h χ2883(521,)\chi_{2883}(521, \cdot) 2883.1.h.a 4 2
2883.1.h.b 4
2883.1.h.c 8
2883.1.i χ2883(1483,)\chi_{2883}(1483, \cdot) None 0 2
2883.1.j χ2883(430,)\chi_{2883}(430, \cdot) None 0 4
2883.1.l χ2883(374,)\chi_{2883}(374, \cdot) 2883.1.l.a 4 4
2883.1.l.b 4
2883.1.l.c 4
2883.1.l.d 16
2883.1.n χ2883(115,)\chi_{2883}(115, \cdot) None 0 8
2883.1.o χ2883(338,)\chi_{2883}(338, \cdot) 2883.1.o.a 8 8
2883.1.o.b 8
2883.1.o.c 8
2883.1.o.d 8
2883.1.o.e 32
2883.1.r χ2883(61,)\chi_{2883}(61, \cdot) None 0 30
2883.1.t χ2883(32,)\chi_{2883}(32, \cdot) 2883.1.t.a 30 30
2883.1.w χ2883(37,)\chi_{2883}(37, \cdot) None 0 60
2883.1.x χ2883(5,)\chi_{2883}(5, \cdot) None 0 60
2883.1.z χ2883(2,)\chi_{2883}(2, \cdot) 2883.1.z.a 120 120
2883.1.bb χ2883(46,)\chi_{2883}(46, \cdot) None 0 120
2883.1.be χ2883(14,)\chi_{2883}(14, \cdot) None 0 240
2883.1.bf χ2883(13,)\chi_{2883}(13, \cdot) None 0 240

Decomposition of S1old(Γ1(2883))S_{1}^{\mathrm{old}}(\Gamma_1(2883)) into lower level spaces

S1old(Γ1(2883)) S_{1}^{\mathrm{old}}(\Gamma_1(2883)) \cong S1new(Γ1(1))S_{1}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS1new(Γ1(3))S_{1}^{\mathrm{new}}(\Gamma_1(3))3^{\oplus 3}\oplusS1new(Γ1(31))S_{1}^{\mathrm{new}}(\Gamma_1(31))4^{\oplus 4}\oplusS1new(Γ1(93))S_{1}^{\mathrm{new}}(\Gamma_1(93))2^{\oplus 2}\oplusS1new(Γ1(961))S_{1}^{\mathrm{new}}(\Gamma_1(961))2^{\oplus 2}