Defining parameters
Level: | \( N \) | \(=\) | \( 2888 = 2^{3} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2888.bn (of order \(114\) and degree \(36\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1444 \) |
Character field: | \(\Q(\zeta_{114})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(760\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2888, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 13824 | 0 | 13824 |
Cusp forms | 13536 | 0 | 13536 |
Eisenstein series | 288 | 0 | 288 |
Decomposition of \(S_{2}^{\mathrm{old}}(2888, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2888, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1444, [\chi])\)\(^{\oplus 2}\)