Properties

Label 2888.2.i
Level $2888$
Weight $2$
Character orbit 2888.i
Rep. character $\chi_{2888}(1873,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $170$
Sturm bound $760$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(760\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2888, [\chi])\).

Total New Old
Modular forms 840 170 670
Cusp forms 680 170 510
Eisenstein series 160 0 160

Trace form

\( 170 q + 3 q^{3} + 4 q^{7} - 88 q^{9} - 6 q^{11} - 4 q^{13} + 4 q^{15} + 8 q^{17} - 6 q^{21} + 12 q^{23} - 81 q^{25} - 18 q^{27} - 4 q^{29} + 24 q^{31} + 5 q^{33} + 18 q^{35} + 16 q^{37} + 20 q^{39} - 15 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2888, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2888, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2888, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(361, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(722, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1444, [\chi])\)\(^{\oplus 2}\)