Properties

Label 2888.2.o
Level $2888$
Weight $2$
Character orbit 2888.o
Rep. character $\chi_{2888}(2235,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $648$
Sturm bound $760$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(760\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2888, [\chi])\).

Total New Old
Modular forms 800 712 88
Cusp forms 720 648 72
Eisenstein series 80 64 16

Trace form

\( 648 q + 3 q^{2} + 6 q^{3} - q^{4} + 7 q^{6} + 294 q^{9} + 6 q^{10} + 8 q^{11} - 12 q^{14} + 3 q^{16} + 2 q^{17} + 4 q^{20} + 9 q^{22} + 11 q^{24} + 262 q^{25} + 12 q^{26} + 10 q^{28} - 44 q^{30} + 3 q^{32}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2888, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2888, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2888, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 2}\)