Properties

Label 2888.2.y
Level $2888$
Weight $2$
Character orbit 2888.y
Rep. character $\chi_{2888}(153,\cdot)$
Character field $\Q(\zeta_{19})$
Dimension $1710$
Sturm bound $760$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.y (of order \(19\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 361 \)
Character field: \(\Q(\zeta_{19})\)
Sturm bound: \(760\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2888, [\chi])\).

Total New Old
Modular forms 6912 1710 5202
Cusp forms 6768 1710 5058
Eisenstein series 144 0 144

Trace form

\( 1710 q - 19 q^{3} - 4 q^{7} - 44 q^{9} + 6 q^{11} - 2 q^{13} + 8 q^{15} - 40 q^{17} + 3 q^{19} + 12 q^{23} - 87 q^{25} - 19 q^{27} + 10 q^{29} - 12 q^{31} + 4 q^{33} + 12 q^{35} + 14 q^{37} - 72 q^{39}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2888, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2888, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2888, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(361, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(722, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1444, [\chi])\)\(^{\oplus 2}\)