Defining parameters
Level: | \( N \) | \(=\) | \( 2888 = 2^{3} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2888.y (of order \(19\) and degree \(18\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 361 \) |
Character field: | \(\Q(\zeta_{19})\) | ||
Sturm bound: | \(760\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2888, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6912 | 1710 | 5202 |
Cusp forms | 6768 | 1710 | 5058 |
Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2888, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2888, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2888, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(361, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(722, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1444, [\chi])\)\(^{\oplus 2}\)