Properties

Label 29.3.f
Level $29$
Weight $3$
Character orbit 29.f
Rep. character $\chi_{29}(2,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $48$
Newform subspaces $1$
Sturm bound $7$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 29.f (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(\zeta_{28})\)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(29, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 48 48 0
Eisenstein series 24 24 0

Trace form

\( 48 q - 16 q^{2} - 12 q^{3} - 14 q^{4} - 14 q^{5} - 14 q^{6} - 10 q^{7} + 28 q^{8} - 14 q^{9} - 20 q^{10} - 8 q^{11} - 68 q^{12} - 14 q^{13} + 26 q^{14} - 4 q^{15} + 18 q^{16} - 26 q^{17} - 34 q^{18} + 2 q^{19}+ \cdots + 316 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(29, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
29.3.f.a 29.f 29.f $48$ $0.790$ None 29.3.f.a \(-16\) \(-12\) \(-14\) \(-10\) $\mathrm{SU}(2)[C_{28}]$