Properties

Label 2912.2.cq
Level 29122912
Weight 22
Character orbit 2912.cq
Rep. character χ2912(159,)\chi_{2912}(159,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 224224
Sturm bound 896896

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2912=25713 2912 = 2^{5} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2912.cq (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 364 364
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 896896

Dimensions

The following table gives the dimensions of various subspaces of M2(2912,[χ])M_{2}(2912, [\chi]).

Total New Old
Modular forms 928 224 704
Cusp forms 864 224 640
Eisenstein series 64 0 64

Trace form

224q112q9+24q13+16q21+112q25+32q3748q418q53+64q57+24q6140q65+48q69+24q7324q7796q81+48q93+O(q100) 224 q - 112 q^{9} + 24 q^{13} + 16 q^{21} + 112 q^{25} + 32 q^{37} - 48 q^{41} - 8 q^{53} + 64 q^{57} + 24 q^{61} - 40 q^{65} + 48 q^{69} + 24 q^{73} - 24 q^{77} - 96 q^{81} + 48 q^{93}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2912,[χ])S_{2}^{\mathrm{new}}(2912, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(2912,[χ])S_{2}^{\mathrm{old}}(2912, [\chi]) into lower level spaces

S2old(2912,[χ]) S_{2}^{\mathrm{old}}(2912, [\chi]) \simeq S2new(364,[χ])S_{2}^{\mathrm{new}}(364, [\chi])4^{\oplus 4}\oplusS2new(1456,[χ])S_{2}^{\mathrm{new}}(1456, [\chi])2^{\oplus 2}