Properties

Label 2912.2.em
Level $2912$
Weight $2$
Character orbit 2912.em
Rep. character $\chi_{2912}(701,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $1344$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.em (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 416 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2912, [\chi])\).

Total New Old
Modular forms 1808 1344 464
Cusp forms 1776 1344 432
Eisenstein series 32 0 32

Trace form

\( 1344 q + 32 q^{12} - 32 q^{22} - 40 q^{26} + 96 q^{27} - 48 q^{36} + 48 q^{39} - 80 q^{40} + 208 q^{48} + 64 q^{52} + 64 q^{55} - 96 q^{62} + 128 q^{66} + 48 q^{68} - 64 q^{75} + 24 q^{78} - 160 q^{88}+ \cdots - 256 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2912, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2912, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)