Defining parameters
Level: | \( N \) | \(=\) | \( 2912 = 2^{5} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2912.hy (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Sturm bound: | \(896\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2912, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1856 | 336 | 1520 |
Cusp forms | 1728 | 336 | 1392 |
Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2912, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2912, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1456, [\chi])\)\(^{\oplus 2}\)