Properties

Label 2912.2.hy
Level $2912$
Weight $2$
Character orbit 2912.hy
Rep. character $\chi_{2912}(799,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $336$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.hy (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2912, [\chi])\).

Total New Old
Modular forms 1856 336 1520
Cusp forms 1728 336 1392
Eisenstein series 128 0 128

Trace form

\( 336 q - 8 q^{5} + 168 q^{9} - 40 q^{37} + 48 q^{41} - 80 q^{45} + 16 q^{53} + 32 q^{57} - 40 q^{61} + 48 q^{65} + 24 q^{73} - 168 q^{81} - 24 q^{85} + 8 q^{89} + 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2912, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2912, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1456, [\chi])\)\(^{\oplus 2}\)