Defining parameters
Level: | \( N \) | \(=\) | \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2925.bn (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 117 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(840\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2925, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 864 | 544 | 320 |
Cusp forms | 816 | 520 | 296 |
Eisenstein series | 48 | 24 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2925, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2925, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 2}\)