Properties

Label 2925.2.dv
Level $2925$
Weight $2$
Character orbit 2925.dv
Rep. character $\chi_{2925}(107,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $336$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.dv (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2925, [\chi])\).

Total New Old
Modular forms 1776 336 1440
Cusp forms 1584 336 1248
Eisenstein series 192 0 192

Trace form

\( 336 q - 20 q^{13} + 168 q^{16} + 16 q^{22} + 32 q^{31} + 12 q^{37} - 24 q^{43} + 32 q^{46} - 16 q^{52} - 52 q^{58} - 48 q^{61} - 96 q^{67} + 136 q^{73} + 32 q^{76} - 124 q^{82} + 96 q^{88} - 40 q^{91} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2925, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2925, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 2}\)