Properties

Label 2925.2.r
Level $2925$
Weight $2$
Character orbit 2925.r
Rep. character $\chi_{2925}(476,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $180$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.r (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(i)\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2925, [\chi])\).

Total New Old
Modular forms 888 180 708
Cusp forms 792 180 612
Eisenstein series 96 0 96

Trace form

\( 180 q - 8 q^{7} + 4 q^{13} - 220 q^{16} - 32 q^{19} - 16 q^{22} + 40 q^{31} - 36 q^{34} + 36 q^{37} - 24 q^{46} + 40 q^{52} - 4 q^{58} + 8 q^{61} - 64 q^{67} - 68 q^{73} - 48 q^{76} + 64 q^{79} - 8 q^{91}+ \cdots + 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2925, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2925, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 2}\)