Properties

Label 2940.2.q
Level $2940$
Weight $2$
Character orbit 2940.q
Rep. character $\chi_{2940}(361,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $52$
Newform subspaces $20$
Sturm bound $1344$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 20 \)
Sturm bound: \(1344\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(11\), \(13\), \(17\), \(31\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2940, [\chi])\).

Total New Old
Modular forms 1440 52 1388
Cusp forms 1248 52 1196
Eisenstein series 192 0 192

Trace form

\( 52 q + 2 q^{3} - 26 q^{9} - 4 q^{11} - 12 q^{13} - 8 q^{17} - 6 q^{19} - 26 q^{25} - 4 q^{27} + 8 q^{29} + 2 q^{31} + 8 q^{33} + 10 q^{37} + 18 q^{39} + 24 q^{41} - 68 q^{43} + 8 q^{47} + 20 q^{51} - 8 q^{55}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2940, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2940.2.q.a 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.a.a \(0\) \(-1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{5}-\zeta_{6}q^{9}+(-2+\cdots)q^{11}+\cdots\)
2940.2.q.b 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.a.d \(0\) \(-1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{5}-\zeta_{6}q^{9}+(-2+\cdots)q^{11}+\cdots\)
2940.2.q.c 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.q.b \(0\) \(-1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{5}-\zeta_{6}q^{9}+(4+\cdots)q^{11}+\cdots\)
2940.2.q.d 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 2940.2.a.a \(0\) \(-1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{5}-\zeta_{6}q^{9}+(6+\cdots)q^{11}+\cdots\)
2940.2.q.e 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.a.c \(0\) \(-1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{5}-\zeta_{6}q^{9}+(-6+\cdots)q^{11}+\cdots\)
2940.2.q.f 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 2940.2.a.e \(0\) \(-1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{5}-\zeta_{6}q^{9}+(-2+\cdots)q^{11}+\cdots\)
2940.2.q.g 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.a.b \(0\) \(-1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{5}-\zeta_{6}q^{9}+(2+\cdots)q^{11}+\cdots\)
2940.2.q.h 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.q.a \(0\) \(-1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{5}-\zeta_{6}q^{9}+(2+\cdots)q^{11}+\cdots\)
2940.2.q.i 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.a.c \(0\) \(1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}-\zeta_{6}q^{5}-\zeta_{6}q^{9}+(-6+\cdots)q^{11}+\cdots\)
2940.2.q.j 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 2940.2.a.e \(0\) \(1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}-\zeta_{6}q^{5}-\zeta_{6}q^{9}+(-2+\cdots)q^{11}+\cdots\)
2940.2.q.k 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.a.b \(0\) \(1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}-\zeta_{6}q^{5}-\zeta_{6}q^{9}+(2-2\zeta_{6})q^{11}+\cdots\)
2940.2.q.l 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.a.d \(0\) \(1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+\zeta_{6}q^{5}-\zeta_{6}q^{9}+(-2+\cdots)q^{11}+\cdots\)
2940.2.q.m 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 420.2.a.a \(0\) \(1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+\zeta_{6}q^{5}-\zeta_{6}q^{9}+(-2+\cdots)q^{11}+\cdots\)
2940.2.q.n 2940.q 7.c $2$ $23.476$ \(\Q(\sqrt{-3}) \) None 2940.2.a.a \(0\) \(1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+\zeta_{6}q^{5}-\zeta_{6}q^{9}+(6-6\zeta_{6})q^{11}+\cdots\)
2940.2.q.o 2940.q 7.c $4$ $23.476$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 2940.2.a.n \(0\) \(-2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{2})q^{3}+\beta _{2}q^{5}+\beta _{2}q^{9}+(-2+\cdots)q^{11}+\cdots\)
2940.2.q.p 2940.q 7.c $4$ $23.476$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 2940.2.a.o \(0\) \(-2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{3}+(1+\beta _{2})q^{5}+(-1-\beta _{2})q^{9}+\cdots\)
2940.2.q.q 2940.q 7.c $4$ $23.476$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 420.2.q.d \(0\) \(2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{2})q^{3}+\beta _{2}q^{5}+\beta _{2}q^{9}+\beta _{1}q^{11}+\cdots\)
2940.2.q.r 2940.q 7.c $4$ $23.476$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 2940.2.a.o \(0\) \(2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{3}+(-1-\beta _{2})q^{5}+(-1-\beta _{2}+\cdots)q^{9}+\cdots\)
2940.2.q.s 2940.q 7.c $4$ $23.476$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 2940.2.a.n \(0\) \(2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{2})q^{3}-\beta _{2}q^{5}+\beta _{2}q^{9}+(-2+\cdots)q^{11}+\cdots\)
2940.2.q.t 2940.q 7.c $4$ $23.476$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 420.2.q.c \(0\) \(2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{2})q^{3}-\beta _{2}q^{5}+\beta _{2}q^{9}+(-1+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2940, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2940, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(588, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(980, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1470, [\chi])\)\(^{\oplus 2}\)