Defining parameters
Level: | \( N \) | = | \( 296 = 2^{3} \cdot 37 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 15 \) | ||
Newform subspaces: | \( 26 \) | ||
Sturm bound: | \(10944\) | ||
Trace bound: | \(6\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(296))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2952 | 1607 | 1345 |
Cusp forms | 2521 | 1467 | 1054 |
Eisenstein series | 431 | 140 | 291 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(296))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(296))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(296)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(74))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(148))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(296))\)\(^{\oplus 1}\)