Properties

Label 296.2
Level 296
Weight 2
Dimension 1467
Nonzero newspaces 15
Newform subspaces 26
Sturm bound 10944
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 15 \)
Newform subspaces: \( 26 \)
Sturm bound: \(10944\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(296))\).

Total New Old
Modular forms 2952 1607 1345
Cusp forms 2521 1467 1054
Eisenstein series 431 140 291

Trace form

\( 1467 q - 36 q^{2} - 36 q^{3} - 36 q^{4} - 36 q^{6} - 36 q^{7} - 36 q^{8} - 72 q^{9} - 36 q^{10} - 36 q^{11} - 36 q^{12} - 36 q^{14} - 36 q^{15} - 36 q^{16} - 72 q^{17} - 36 q^{18} - 36 q^{19} - 36 q^{20}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(296))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
296.2.a \(\chi_{296}(1, \cdot)\) 296.2.a.a 1 1
296.2.a.b 1
296.2.a.c 3
296.2.a.d 4
296.2.c \(\chi_{296}(149, \cdot)\) 296.2.c.a 4 1
296.2.c.b 4
296.2.c.c 28
296.2.e \(\chi_{296}(221, \cdot)\) 296.2.e.a 36 1
296.2.g \(\chi_{296}(73, \cdot)\) 296.2.g.a 10 1
296.2.i \(\chi_{296}(121, \cdot)\) 296.2.i.a 2 2
296.2.i.b 6
296.2.i.c 10
296.2.j \(\chi_{296}(43, \cdot)\) 296.2.j.a 8 2
296.2.j.b 64
296.2.l \(\chi_{296}(31, \cdot)\) None 0 2
296.2.o \(\chi_{296}(233, \cdot)\) 296.2.o.a 20 2
296.2.q \(\chi_{296}(85, \cdot)\) 296.2.q.a 72 2
296.2.s \(\chi_{296}(269, \cdot)\) 296.2.s.a 72 2
296.2.u \(\chi_{296}(9, \cdot)\) 296.2.u.a 24 6
296.2.u.b 30
296.2.w \(\chi_{296}(23, \cdot)\) None 0 4
296.2.y \(\chi_{296}(51, \cdot)\) 296.2.y.a 4 4
296.2.y.b 4
296.2.y.c 136
296.2.ba \(\chi_{296}(25, \cdot)\) 296.2.ba.a 60 6
296.2.bc \(\chi_{296}(53, \cdot)\) 296.2.bc.a 216 6
296.2.bf \(\chi_{296}(21, \cdot)\) 296.2.bf.a 216 6
296.2.bh \(\chi_{296}(15, \cdot)\) None 0 12
296.2.bj \(\chi_{296}(19, \cdot)\) 296.2.bj.a 432 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(296))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(296)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(74))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(148))\)\(^{\oplus 2}\)