Properties

Label 3.10.a
Level $3$
Weight $10$
Character orbit 3.a
Rep. character $\chi_{3}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $3$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 3.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(3\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(3))\).

Total New Old
Modular forms 4 2 2
Cusp forms 2 2 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(1\)
\(-\)\(1\)

Trace form

\( 2 q - 18 q^{2} + 596 q^{4} - 2844 q^{5} + 4374 q^{6} + 4648 q^{7} - 22392 q^{8} + 13122 q^{9} + 19764 q^{10} + 22608 q^{11} - 78732 q^{12} - 120308 q^{13} + 325584 q^{14} - 17496 q^{15} - 179440 q^{16}+ \cdots + 148331088 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
3.10.a.a 3.a 1.a $1$ $1.545$ \(\Q\) None 3.10.a.a \(-36\) \(-81\) \(-1314\) \(-4480\) $+$ $\mathrm{SU}(2)$ \(q-6^{2}q^{2}-3^{4}q^{3}+28^{2}q^{4}-1314q^{5}+\cdots\)
3.10.a.b 3.a 1.a $1$ $1.545$ \(\Q\) None 3.10.a.b \(18\) \(81\) \(-1530\) \(9128\) $-$ $\mathrm{SU}(2)$ \(q+18q^{2}+3^{4}q^{3}-188q^{4}-1530q^{5}+\cdots\)