Properties

Label 3.44.a
Level $3$
Weight $44$
Character orbit 3.a
Rep. character $\chi_{3}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $2$
Sturm bound $14$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3 \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 3.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(14\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{44}(\Gamma_0(3))\).

Total New Old
Modular forms 15 7 8
Cusp forms 13 7 6
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(4\)
\(-\)\(3\)

Trace form

\( 7 q + 6517038 q^{2} - 10460353203 q^{3} + 27552692534980 q^{4} + 11\!\cdots\!50 q^{5} + 33\!\cdots\!30 q^{6} - 15\!\cdots\!60 q^{7} + 89\!\cdots\!04 q^{8} + 76\!\cdots\!63 q^{9} + 30\!\cdots\!40 q^{10}+ \cdots - 20\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{44}^{\mathrm{new}}(\Gamma_0(3))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
3.44.a.a 3.a 1.a $3$ $35.133$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 3.44.a.a \(4857024\) \(31381059609\) \(-50\!\cdots\!70\) \(-16\!\cdots\!88\) $-$ $\mathrm{SU}(2)$ \(q+(1619008-\beta _{1})q^{2}+3^{21}q^{3}+(-593686009856+\cdots)q^{4}+\cdots\)
3.44.a.b 3.a 1.a $4$ $35.133$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 3.44.a.b \(1660014\) \(-41841412812\) \(16\!\cdots\!20\) \(11\!\cdots\!28\) $+$ $\mathrm{SU}(2)$ \(q+(415003+\beta _{1})q^{2}-3^{21}q^{3}+(7333437011374+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{44}^{\mathrm{old}}(\Gamma_0(3))\) into lower level spaces

\( S_{44}^{\mathrm{old}}(\Gamma_0(3)) \simeq \) \(S_{44}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)