Defining parameters
Level: | \( N \) | \(=\) | \( 3 \) |
Weight: | \( k \) | \(=\) | \( 44 \) |
Character orbit: | \([\chi]\) | \(=\) | 3.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{44}(\Gamma_0(3))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 15 | 7 | 8 |
Cusp forms | 13 | 7 | 6 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(4\) |
\(-\) | \(3\) |
Trace form
Decomposition of \(S_{44}^{\mathrm{new}}(\Gamma_0(3))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
3.44.a.a | $3$ | $35.133$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(4857024\) | \(31381059609\) | \(-50\!\cdots\!70\) | \(-16\!\cdots\!88\) | $-$ | \(q+(1619008-\beta _{1})q^{2}+3^{21}q^{3}+(-593686009856+\cdots)q^{4}+\cdots\) | |
3.44.a.b | $4$ | $35.133$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(1660014\) | \(-41841412812\) | \(16\!\cdots\!20\) | \(11\!\cdots\!28\) | $+$ | \(q+(415003+\beta _{1})q^{2}-3^{21}q^{3}+(7333437011374+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{44}^{\mathrm{old}}(\Gamma_0(3))\) into lower level spaces
\( S_{44}^{\mathrm{old}}(\Gamma_0(3)) \simeq \) \(S_{44}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)