Properties

Label 30.16
Level 30
Weight 16
Dimension 84
Nonzero newspaces 3
Newform subspaces 12
Sturm bound 768
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) = \( 16 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 12 \)
Sturm bound: \(768\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(30))\).

Total New Old
Modular forms 376 84 292
Cusp forms 344 84 260
Eisenstein series 32 0 32

Trace form

\( 84 q + 1502 q^{3} - 65536 q^{4} - 488416 q^{5} + 666368 q^{6} - 577096 q^{7} - 19131876 q^{9} + 27338240 q^{10} - 128915168 q^{11} + 118718464 q^{12} - 1222650568 q^{13} + 1100154880 q^{14} + 225278522 q^{15}+ \cdots + 16\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(30))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
30.16.a \(\chi_{30}(1, \cdot)\) 30.16.a.a 1 1
30.16.a.b 1
30.16.a.c 1
30.16.a.d 1
30.16.a.e 1
30.16.a.f 1
30.16.a.g 2
30.16.a.h 2
30.16.c \(\chi_{30}(19, \cdot)\) 30.16.c.a 2 1
30.16.c.b 4
30.16.c.c 8
30.16.e \(\chi_{30}(17, \cdot)\) 30.16.e.a 60 2

Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(30))\) into lower level spaces

\( S_{16}^{\mathrm{old}}(\Gamma_1(30)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)