Defining parameters
Level: | \( N \) | = | \( 30 = 2 \cdot 3 \cdot 5 \) |
Weight: | \( k \) | = | \( 16 \) |
Nonzero newspaces: | \( 3 \) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(30))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 376 | 84 | 292 |
Cusp forms | 344 | 84 | 260 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(30))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(30))\) into lower level spaces
\( S_{16}^{\mathrm{old}}(\Gamma_1(30)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)