Properties

Label 30.18.a
Level $30$
Weight $18$
Character orbit 30.a
Rep. character $\chi_{30}(1,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $8$
Sturm bound $108$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(108\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_0(30))\).

Total New Old
Modular forms 106 10 96
Cusp forms 98 10 88
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(6\)

Trace form

\( 10 q + 13122 q^{3} + 655360 q^{4} - 26254396 q^{7} + 430467210 q^{9} + 200000000 q^{10} - 1034780340 q^{11} + 859963392 q^{12} + 4735309616 q^{13} - 8275031040 q^{14} + 42949672960 q^{16} - 64966043976 q^{17}+ \cdots - 44\!\cdots\!40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_0(30))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
30.18.a.a 30.a 1.a $1$ $54.967$ \(\Q\) None 30.18.a.a \(-256\) \(-6561\) \(-390625\) \(2579612\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{8}q^{2}-3^{8}q^{3}+2^{16}q^{4}-5^{8}q^{5}+\cdots\)
30.18.a.b 30.a 1.a $1$ $54.967$ \(\Q\) None 30.18.a.b \(-256\) \(-6561\) \(390625\) \(-2533888\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{8}q^{2}-3^{8}q^{3}+2^{16}q^{4}+5^{8}q^{5}+\cdots\)
30.18.a.c 30.a 1.a $1$ $54.967$ \(\Q\) None 30.18.a.c \(-256\) \(6561\) \(390625\) \(1929536\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2^{8}q^{2}+3^{8}q^{3}+2^{16}q^{4}+5^{8}q^{5}+\cdots\)
30.18.a.d 30.a 1.a $1$ $54.967$ \(\Q\) None 30.18.a.d \(256\) \(-6561\) \(-390625\) \(-7079716\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2^{8}q^{2}-3^{8}q^{3}+2^{16}q^{4}-5^{8}q^{5}+\cdots\)
30.18.a.e 30.a 1.a $1$ $54.967$ \(\Q\) None 30.18.a.e \(256\) \(-6561\) \(390625\) \(-12193216\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2^{8}q^{2}-3^{8}q^{3}+2^{16}q^{4}+5^{8}q^{5}+\cdots\)
30.18.a.f 30.a 1.a $1$ $54.967$ \(\Q\) None 30.18.a.f \(256\) \(6561\) \(-390625\) \(-16972732\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{8}q^{2}+3^{8}q^{3}+2^{16}q^{4}-5^{8}q^{5}+\cdots\)
30.18.a.g 30.a 1.a $2$ $54.967$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 30.18.a.g \(-512\) \(13122\) \(-781250\) \(1059712\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2^{8}q^{2}+3^{8}q^{3}+2^{16}q^{4}-5^{8}q^{5}+\cdots\)
30.18.a.h 30.a 1.a $2$ $54.967$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 30.18.a.h \(512\) \(13122\) \(781250\) \(6956296\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{8}q^{2}+3^{8}q^{3}+2^{16}q^{4}+5^{8}q^{5}+\cdots\)

Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_0(30))\) into lower level spaces

\( S_{18}^{\mathrm{old}}(\Gamma_0(30)) \simeq \) \(S_{18}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)