Properties

Label 300.1.l
Level $300$
Weight $1$
Character orbit 300.l
Rep. character $\chi_{300}(107,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $4$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 300.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 60 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(300, [\chi])\).

Total New Old
Modular forms 28 12 16
Cusp forms 4 4 0
Eisenstein series 24 8 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 4 q^{6} - 4 q^{16} + 4 q^{36} + 8 q^{46} - 8 q^{61} - 4 q^{81} + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(300, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
300.1.l.a 300.l 60.l $4$ $0.150$ \(\Q(\zeta_{8})\) $D_{2}$ \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-5}) \) \(\Q(\sqrt{3}) \) 300.1.l.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{8}q^{2}-\zeta_{8}^{3}q^{3}+\zeta_{8}^{2}q^{4}-q^{6}+\cdots\)