Properties

Label 300.2.h.a.299.6
Level $300$
Weight $2$
Character 300.299
Analytic conductor $2.396$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,2,Mod(299,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.299");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.342102016.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} + 4x^{4} + 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 299.6
Root \(1.17915 + 0.780776i\) of defining polynomial
Character \(\chi\) \(=\) 300.299
Dual form 300.2.h.a.299.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.780776 - 1.17915i) q^{2} +(0.848071 - 1.51022i) q^{3} +(-0.780776 - 1.84130i) q^{4} +(-1.11862 - 2.17915i) q^{6} +3.02045 q^{7} +(-2.78078 - 0.516994i) q^{8} +(-1.56155 - 2.56155i) q^{9} +O(q^{10})\) \(q+(0.780776 - 1.17915i) q^{2} +(0.848071 - 1.51022i) q^{3} +(-0.780776 - 1.84130i) q^{4} +(-1.11862 - 2.17915i) q^{6} +3.02045 q^{7} +(-2.78078 - 0.516994i) q^{8} +(-1.56155 - 2.56155i) q^{9} -1.32431 q^{11} +(-3.44293 - 0.382406i) q^{12} +5.12311i q^{13} +(2.35829 - 3.56155i) q^{14} +(-2.78078 + 2.87529i) q^{16} +2.00000 q^{17} +(-4.23967 - 0.158699i) q^{18} -1.32431i q^{19} +(2.56155 - 4.56155i) q^{21} +(-1.03399 + 1.56155i) q^{22} +0.371834i q^{23} +(-3.13907 + 3.76115i) q^{24} +(6.04090 + 4.00000i) q^{26} +(-5.19283 + 0.185917i) q^{27} +(-2.35829 - 5.56155i) q^{28} +3.12311i q^{29} -4.71659i q^{31} +(1.21922 + 5.52390i) q^{32} +(-1.12311 + 2.00000i) q^{33} +(1.56155 - 2.35829i) q^{34} +(-3.49737 + 4.87529i) q^{36} +5.12311i q^{37} +(-1.56155 - 1.03399i) q^{38} +(7.73704 + 4.34475i) q^{39} +1.12311i q^{41} +(-3.37874 - 6.58200i) q^{42} +7.73704 q^{43} +(1.03399 + 2.43845i) q^{44} +(0.438447 + 0.290319i) q^{46} -3.02045i q^{47} +(1.98403 + 6.63804i) q^{48} +2.12311 q^{49} +(1.69614 - 3.02045i) q^{51} +(9.43318 - 4.00000i) q^{52} +12.2462 q^{53} +(-3.83521 + 6.26827i) q^{54} +(-8.39919 - 1.56155i) q^{56} +(-2.00000 - 1.12311i) q^{57} +(3.68260 + 2.43845i) q^{58} -14.1498 q^{59} +3.12311 q^{61} +(-5.56155 - 3.68260i) q^{62} +(-4.71659 - 7.73704i) q^{63} +(7.46543 + 2.87529i) q^{64} +(1.48140 + 2.88586i) q^{66} +4.34475 q^{67} +(-1.56155 - 3.68260i) q^{68} +(0.561553 + 0.315342i) q^{69} -3.39228 q^{71} +(3.01802 + 7.93042i) q^{72} -8.24621i q^{73} +(6.04090 + 4.00000i) q^{74} +(-2.43845 + 1.03399i) q^{76} -4.00000 q^{77} +(11.1640 - 5.73082i) q^{78} -8.10887i q^{79} +(-4.12311 + 8.00000i) q^{81} +(1.32431 + 0.876894i) q^{82} +15.1022i q^{83} +(-10.3992 - 1.15504i) q^{84} +(6.04090 - 9.12311i) q^{86} +(4.71659 + 2.64861i) q^{87} +(3.68260 + 0.684658i) q^{88} +10.2462i q^{89} +15.4741i q^{91} +(0.684658 - 0.290319i) q^{92} +(-7.12311 - 4.00000i) q^{93} +(-3.56155 - 2.35829i) q^{94} +(9.37632 + 2.84336i) q^{96} -6.00000i q^{97} +(1.65767 - 2.50345i) q^{98} +(2.06798 + 3.39228i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{4} - 6 q^{6} - 14 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} + 2 q^{4} - 6 q^{6} - 14 q^{8} + 4 q^{9} - 14 q^{12} - 14 q^{16} + 16 q^{17} - 18 q^{18} + 4 q^{21} + 2 q^{24} + 18 q^{32} + 24 q^{33} - 4 q^{34} + 18 q^{36} + 4 q^{38} + 16 q^{42} + 20 q^{46} + 10 q^{48} - 16 q^{49} + 32 q^{53} + 10 q^{54} - 16 q^{57} - 8 q^{61} - 28 q^{62} + 2 q^{64} - 40 q^{66} + 4 q^{68} - 12 q^{69} + 10 q^{72} - 36 q^{76} - 32 q^{77} + 8 q^{78} - 16 q^{84} - 44 q^{92} - 24 q^{93} - 12 q^{94} + 42 q^{96} + 38 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.780776 1.17915i 0.552092 0.833783i
\(3\) 0.848071 1.51022i 0.489634 0.871928i
\(4\) −0.780776 1.84130i −0.390388 0.920650i
\(5\) 0 0
\(6\) −1.11862 2.17915i −0.456676 0.889633i
\(7\) 3.02045 1.14162 0.570811 0.821081i \(-0.306629\pi\)
0.570811 + 0.821081i \(0.306629\pi\)
\(8\) −2.78078 0.516994i −0.983153 0.182785i
\(9\) −1.56155 2.56155i −0.520518 0.853851i
\(10\) 0 0
\(11\) −1.32431 −0.399294 −0.199647 0.979868i \(-0.563979\pi\)
−0.199647 + 0.979868i \(0.563979\pi\)
\(12\) −3.44293 0.382406i −0.993888 0.110391i
\(13\) 5.12311i 1.42089i 0.703751 + 0.710447i \(0.251507\pi\)
−0.703751 + 0.710447i \(0.748493\pi\)
\(14\) 2.35829 3.56155i 0.630281 0.951865i
\(15\) 0 0
\(16\) −2.78078 + 2.87529i −0.695194 + 0.718822i
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) −4.23967 0.158699i −0.999300 0.0374058i
\(19\) 1.32431i 0.303817i −0.988395 0.151908i \(-0.951458\pi\)
0.988395 0.151908i \(-0.0485419\pi\)
\(20\) 0 0
\(21\) 2.56155 4.56155i 0.558977 0.995412i
\(22\) −1.03399 + 1.56155i −0.220447 + 0.332924i
\(23\) 0.371834i 0.0775328i 0.999248 + 0.0387664i \(0.0123428\pi\)
−0.999248 + 0.0387664i \(0.987657\pi\)
\(24\) −3.13907 + 3.76115i −0.640760 + 0.767741i
\(25\) 0 0
\(26\) 6.04090 + 4.00000i 1.18472 + 0.784465i
\(27\) −5.19283 + 0.185917i −0.999360 + 0.0357798i
\(28\) −2.35829 5.56155i −0.445676 1.05103i
\(29\) 3.12311i 0.579946i 0.957035 + 0.289973i \(0.0936464\pi\)
−0.957035 + 0.289973i \(0.906354\pi\)
\(30\) 0 0
\(31\) 4.71659i 0.847124i −0.905867 0.423562i \(-0.860780\pi\)
0.905867 0.423562i \(-0.139220\pi\)
\(32\) 1.21922 + 5.52390i 0.215530 + 0.976497i
\(33\) −1.12311 + 2.00000i −0.195508 + 0.348155i
\(34\) 1.56155 2.35829i 0.267804 0.404444i
\(35\) 0 0
\(36\) −3.49737 + 4.87529i −0.582894 + 0.812548i
\(37\) 5.12311i 0.842233i 0.907006 + 0.421117i \(0.138362\pi\)
−0.907006 + 0.421117i \(0.861638\pi\)
\(38\) −1.56155 1.03399i −0.253317 0.167735i
\(39\) 7.73704 + 4.34475i 1.23892 + 0.695718i
\(40\) 0 0
\(41\) 1.12311i 0.175400i 0.996147 + 0.0876998i \(0.0279516\pi\)
−0.996147 + 0.0876998i \(0.972048\pi\)
\(42\) −3.37874 6.58200i −0.521351 1.01562i
\(43\) 7.73704 1.17989 0.589944 0.807445i \(-0.299150\pi\)
0.589944 + 0.807445i \(0.299150\pi\)
\(44\) 1.03399 + 2.43845i 0.155879 + 0.367610i
\(45\) 0 0
\(46\) 0.438447 + 0.290319i 0.0646455 + 0.0428052i
\(47\) 3.02045i 0.440578i −0.975435 0.220289i \(-0.929300\pi\)
0.975435 0.220289i \(-0.0707000\pi\)
\(48\) 1.98403 + 6.63804i 0.286371 + 0.958119i
\(49\) 2.12311 0.303301
\(50\) 0 0
\(51\) 1.69614 3.02045i 0.237507 0.422947i
\(52\) 9.43318 4.00000i 1.30815 0.554700i
\(53\) 12.2462 1.68215 0.841073 0.540921i \(-0.181924\pi\)
0.841073 + 0.540921i \(0.181924\pi\)
\(54\) −3.83521 + 6.26827i −0.521906 + 0.853003i
\(55\) 0 0
\(56\) −8.39919 1.56155i −1.12239 0.208671i
\(57\) −2.00000 1.12311i −0.264906 0.148759i
\(58\) 3.68260 + 2.43845i 0.483549 + 0.320184i
\(59\) −14.1498 −1.84214 −0.921071 0.389394i \(-0.872685\pi\)
−0.921071 + 0.389394i \(0.872685\pi\)
\(60\) 0 0
\(61\) 3.12311 0.399873 0.199936 0.979809i \(-0.435926\pi\)
0.199936 + 0.979809i \(0.435926\pi\)
\(62\) −5.56155 3.68260i −0.706318 0.467691i
\(63\) −4.71659 7.73704i −0.594234 0.974775i
\(64\) 7.46543 + 2.87529i 0.933179 + 0.359411i
\(65\) 0 0
\(66\) 1.48140 + 2.88586i 0.182348 + 0.355225i
\(67\) 4.34475 0.530796 0.265398 0.964139i \(-0.414497\pi\)
0.265398 + 0.964139i \(0.414497\pi\)
\(68\) −1.56155 3.68260i −0.189366 0.446581i
\(69\) 0.561553 + 0.315342i 0.0676030 + 0.0379627i
\(70\) 0 0
\(71\) −3.39228 −0.402590 −0.201295 0.979531i \(-0.564515\pi\)
−0.201295 + 0.979531i \(0.564515\pi\)
\(72\) 3.01802 + 7.93042i 0.355677 + 0.934609i
\(73\) 8.24621i 0.965146i −0.875856 0.482573i \(-0.839702\pi\)
0.875856 0.482573i \(-0.160298\pi\)
\(74\) 6.04090 + 4.00000i 0.702240 + 0.464991i
\(75\) 0 0
\(76\) −2.43845 + 1.03399i −0.279709 + 0.118607i
\(77\) −4.00000 −0.455842
\(78\) 11.1640 5.73082i 1.26407 0.648888i
\(79\) 8.10887i 0.912319i −0.889898 0.456160i \(-0.849225\pi\)
0.889898 0.456160i \(-0.150775\pi\)
\(80\) 0 0
\(81\) −4.12311 + 8.00000i −0.458123 + 0.888889i
\(82\) 1.32431 + 0.876894i 0.146245 + 0.0968368i
\(83\) 15.1022i 1.65769i 0.559481 + 0.828843i \(0.311000\pi\)
−0.559481 + 0.828843i \(0.689000\pi\)
\(84\) −10.3992 1.15504i −1.13464 0.126025i
\(85\) 0 0
\(86\) 6.04090 9.12311i 0.651407 0.983770i
\(87\) 4.71659 + 2.64861i 0.505671 + 0.283961i
\(88\) 3.68260 + 0.684658i 0.392567 + 0.0729848i
\(89\) 10.2462i 1.08610i 0.839702 + 0.543048i \(0.182730\pi\)
−0.839702 + 0.543048i \(0.817270\pi\)
\(90\) 0 0
\(91\) 15.4741i 1.62212i
\(92\) 0.684658 0.290319i 0.0713806 0.0302679i
\(93\) −7.12311 4.00000i −0.738632 0.414781i
\(94\) −3.56155 2.35829i −0.367346 0.243240i
\(95\) 0 0
\(96\) 9.37632 + 2.84336i 0.956966 + 0.290199i
\(97\) 6.00000i 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) 1.65767 2.50345i 0.167450 0.252887i
\(99\) 2.06798 + 3.39228i 0.207839 + 0.340937i
\(100\) 0 0
\(101\) 0.876894i 0.0872543i 0.999048 + 0.0436271i \(0.0138914\pi\)
−0.999048 + 0.0436271i \(0.986109\pi\)
\(102\) −2.23725 4.35829i −0.221520 0.431535i
\(103\) −9.80501 −0.966117 −0.483058 0.875588i \(-0.660474\pi\)
−0.483058 + 0.875588i \(0.660474\pi\)
\(104\) 2.64861 14.2462i 0.259718 1.39696i
\(105\) 0 0
\(106\) 9.56155 14.4401i 0.928700 1.40255i
\(107\) 3.02045i 0.291998i 0.989285 + 0.145999i \(0.0466396\pi\)
−0.989285 + 0.145999i \(0.953360\pi\)
\(108\) 4.39676 + 9.41639i 0.423079 + 0.906093i
\(109\) 0.876894 0.0839912 0.0419956 0.999118i \(-0.486628\pi\)
0.0419956 + 0.999118i \(0.486628\pi\)
\(110\) 0 0
\(111\) 7.73704 + 4.34475i 0.734367 + 0.412386i
\(112\) −8.39919 + 8.68466i −0.793649 + 0.820623i
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) −2.88586 + 1.48140i −0.270286 + 0.138746i
\(115\) 0 0
\(116\) 5.75058 2.43845i 0.533928 0.226404i
\(117\) 13.1231 8.00000i 1.21323 0.739600i
\(118\) −11.0478 + 16.6847i −1.01703 + 1.53595i
\(119\) 6.04090 0.553768
\(120\) 0 0
\(121\) −9.24621 −0.840565
\(122\) 2.43845 3.68260i 0.220767 0.333407i
\(123\) 1.69614 + 0.952473i 0.152936 + 0.0858816i
\(124\) −8.68466 + 3.68260i −0.779905 + 0.330707i
\(125\) 0 0
\(126\) −12.8057 0.479343i −1.14082 0.0427033i
\(127\) −15.1022 −1.34011 −0.670054 0.742313i \(-0.733729\pi\)
−0.670054 + 0.742313i \(0.733729\pi\)
\(128\) 9.21922 6.55789i 0.814872 0.579641i
\(129\) 6.56155 11.6847i 0.577713 1.02878i
\(130\) 0 0
\(131\) −5.46026 −0.477065 −0.238532 0.971135i \(-0.576666\pi\)
−0.238532 + 0.971135i \(0.576666\pi\)
\(132\) 4.55950 + 0.506422i 0.396853 + 0.0440784i
\(133\) 4.00000i 0.346844i
\(134\) 3.39228 5.12311i 0.293049 0.442569i
\(135\) 0 0
\(136\) −5.56155 1.03399i −0.476899 0.0886637i
\(137\) −8.24621 −0.704521 −0.352261 0.935902i \(-0.614587\pi\)
−0.352261 + 0.935902i \(0.614587\pi\)
\(138\) 0.810281 0.415942i 0.0689757 0.0354074i
\(139\) 17.5420i 1.48790i 0.668237 + 0.743949i \(0.267049\pi\)
−0.668237 + 0.743949i \(0.732951\pi\)
\(140\) 0 0
\(141\) −4.56155 2.56155i −0.384152 0.215722i
\(142\) −2.64861 + 4.00000i −0.222267 + 0.335673i
\(143\) 6.78456i 0.567354i
\(144\) 11.7075 + 2.63319i 0.975628 + 0.219433i
\(145\) 0 0
\(146\) −9.72350 6.43845i −0.804722 0.532850i
\(147\) 1.80054 3.20636i 0.148506 0.264457i
\(148\) 9.43318 4.00000i 0.775402 0.328798i
\(149\) 14.0000i 1.14692i −0.819232 0.573462i \(-0.805600\pi\)
0.819232 0.573462i \(-0.194400\pi\)
\(150\) 0 0
\(151\) 7.36520i 0.599372i −0.954038 0.299686i \(-0.903118\pi\)
0.954038 0.299686i \(-0.0968819\pi\)
\(152\) −0.684658 + 3.68260i −0.0555331 + 0.298698i
\(153\) −3.12311 5.12311i −0.252488 0.414179i
\(154\) −3.12311 + 4.71659i −0.251667 + 0.380074i
\(155\) 0 0
\(156\) 1.95910 17.6385i 0.156854 1.41221i
\(157\) 3.36932i 0.268901i −0.990920 0.134450i \(-0.957073\pi\)
0.990920 0.134450i \(-0.0429269\pi\)
\(158\) −9.56155 6.33122i −0.760676 0.503684i
\(159\) 10.3857 18.4945i 0.823636 1.46671i
\(160\) 0 0
\(161\) 1.12311i 0.0885131i
\(162\) 6.21395 + 11.1080i 0.488214 + 0.872724i
\(163\) −15.6829 −1.22838 −0.614189 0.789159i \(-0.710517\pi\)
−0.614189 + 0.789159i \(0.710517\pi\)
\(164\) 2.06798 0.876894i 0.161482 0.0684739i
\(165\) 0 0
\(166\) 17.8078 + 11.7915i 1.38215 + 0.915196i
\(167\) 9.06134i 0.701188i 0.936528 + 0.350594i \(0.114020\pi\)
−0.936528 + 0.350594i \(0.885980\pi\)
\(168\) −9.48140 + 11.3604i −0.731506 + 0.876470i
\(169\) −13.2462 −1.01894
\(170\) 0 0
\(171\) −3.39228 + 2.06798i −0.259414 + 0.158142i
\(172\) −6.04090 14.2462i −0.460614 1.08626i
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 6.80571 3.49358i 0.515939 0.264847i
\(175\) 0 0
\(176\) 3.68260 3.80776i 0.277587 0.287021i
\(177\) −12.0000 + 21.3693i −0.901975 + 1.60622i
\(178\) 12.0818 + 8.00000i 0.905569 + 0.599625i
\(179\) −10.0138 −0.748468 −0.374234 0.927334i \(-0.622094\pi\)
−0.374234 + 0.927334i \(0.622094\pi\)
\(180\) 0 0
\(181\) −12.2462 −0.910254 −0.455127 0.890427i \(-0.650406\pi\)
−0.455127 + 0.890427i \(0.650406\pi\)
\(182\) 18.2462 + 12.0818i 1.35250 + 0.895562i
\(183\) 2.64861 4.71659i 0.195791 0.348660i
\(184\) 0.192236 1.03399i 0.0141718 0.0762266i
\(185\) 0 0
\(186\) −10.2781 + 5.27608i −0.753630 + 0.386861i
\(187\) −2.64861 −0.193686
\(188\) −5.56155 + 2.35829i −0.405618 + 0.171996i
\(189\) −15.6847 + 0.561553i −1.14089 + 0.0408470i
\(190\) 0 0
\(191\) 24.9073 1.80223 0.901113 0.433585i \(-0.142752\pi\)
0.901113 + 0.433585i \(0.142752\pi\)
\(192\) 10.6735 8.83603i 0.770297 0.637686i
\(193\) 0.246211i 0.0177227i 0.999961 + 0.00886134i \(0.00282069\pi\)
−0.999961 + 0.00886134i \(0.997179\pi\)
\(194\) −7.07488 4.68466i −0.507947 0.336339i
\(195\) 0 0
\(196\) −1.65767 3.90928i −0.118405 0.279234i
\(197\) 4.24621 0.302530 0.151265 0.988493i \(-0.451665\pi\)
0.151265 + 0.988493i \(0.451665\pi\)
\(198\) 5.61463 + 0.210167i 0.399014 + 0.0149359i
\(199\) 5.46026i 0.387067i −0.981094 0.193534i \(-0.938005\pi\)
0.981094 0.193534i \(-0.0619949\pi\)
\(200\) 0 0
\(201\) 3.68466 6.56155i 0.259896 0.462816i
\(202\) 1.03399 + 0.684658i 0.0727511 + 0.0481724i
\(203\) 9.43318i 0.662079i
\(204\) −6.88586 0.764811i −0.482107 0.0535475i
\(205\) 0 0
\(206\) −7.65552 + 11.5616i −0.533385 + 0.805532i
\(207\) 0.952473 0.580639i 0.0662014 0.0403572i
\(208\) −14.7304 14.2462i −1.02137 0.987797i
\(209\) 1.75379i 0.121312i
\(210\) 0 0
\(211\) 16.7984i 1.15645i −0.815878 0.578224i \(-0.803746\pi\)
0.815878 0.578224i \(-0.196254\pi\)
\(212\) −9.56155 22.5490i −0.656690 1.54867i
\(213\) −2.87689 + 5.12311i −0.197122 + 0.351029i
\(214\) 3.56155 + 2.35829i 0.243463 + 0.161210i
\(215\) 0 0
\(216\) 14.5362 + 2.16766i 0.989063 + 0.147491i
\(217\) 14.2462i 0.967096i
\(218\) 0.684658 1.03399i 0.0463709 0.0700305i
\(219\) −12.4536 6.99337i −0.841538 0.472568i
\(220\) 0 0
\(221\) 10.2462i 0.689235i
\(222\) 11.1640 5.73082i 0.749279 0.384628i
\(223\) 8.31768 0.556993 0.278496 0.960437i \(-0.410164\pi\)
0.278496 + 0.960437i \(0.410164\pi\)
\(224\) 3.68260 + 16.6847i 0.246054 + 1.11479i
\(225\) 0 0
\(226\) −10.9309 + 16.5081i −0.727111 + 1.09810i
\(227\) 21.8868i 1.45268i −0.687337 0.726339i \(-0.741220\pi\)
0.687337 0.726339i \(-0.258780\pi\)
\(228\) −0.506422 + 4.55950i −0.0335386 + 0.301960i
\(229\) 16.2462 1.07358 0.536790 0.843716i \(-0.319637\pi\)
0.536790 + 0.843716i \(0.319637\pi\)
\(230\) 0 0
\(231\) −3.39228 + 6.04090i −0.223196 + 0.397462i
\(232\) 1.61463 8.68466i 0.106005 0.570176i
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0.813033 21.7203i 0.0531497 1.41990i
\(235\) 0 0
\(236\) 11.0478 + 26.0540i 0.719151 + 1.69597i
\(237\) −12.2462 6.87689i −0.795477 0.446702i
\(238\) 4.71659 7.12311i 0.305731 0.461722i
\(239\) 17.3790 1.12416 0.562078 0.827084i \(-0.310002\pi\)
0.562078 + 0.827084i \(0.310002\pi\)
\(240\) 0 0
\(241\) 13.3693 0.861193 0.430597 0.902544i \(-0.358303\pi\)
0.430597 + 0.902544i \(0.358303\pi\)
\(242\) −7.21922 + 10.9026i −0.464069 + 0.700849i
\(243\) 8.58511 + 13.0114i 0.550735 + 0.834680i
\(244\) −2.43845 5.75058i −0.156106 0.368143i
\(245\) 0 0
\(246\) 2.44741 1.25633i 0.156041 0.0801008i
\(247\) 6.78456 0.431691
\(248\) −2.43845 + 13.1158i −0.154842 + 0.832853i
\(249\) 22.8078 + 12.8078i 1.44538 + 0.811659i
\(250\) 0 0
\(251\) −18.7033 −1.18054 −0.590272 0.807205i \(-0.700979\pi\)
−0.590272 + 0.807205i \(0.700979\pi\)
\(252\) −10.5636 + 14.7256i −0.665445 + 0.927623i
\(253\) 0.492423i 0.0309583i
\(254\) −11.7915 + 17.8078i −0.739863 + 1.11736i
\(255\) 0 0
\(256\) −0.534565 15.9911i −0.0334103 0.999442i
\(257\) 30.4924 1.90207 0.951033 0.309091i \(-0.100025\pi\)
0.951033 + 0.309091i \(0.100025\pi\)
\(258\) −8.65483 16.8601i −0.538826 1.04967i
\(259\) 15.4741i 0.961512i
\(260\) 0 0
\(261\) 8.00000 4.87689i 0.495188 0.301872i
\(262\) −4.26324 + 6.43845i −0.263384 + 0.397769i
\(263\) 23.7917i 1.46706i −0.679656 0.733531i \(-0.737871\pi\)
0.679656 0.733531i \(-0.262129\pi\)
\(264\) 4.15709 4.98091i 0.255851 0.306554i
\(265\) 0 0
\(266\) −4.71659 3.12311i −0.289193 0.191490i
\(267\) 15.4741 + 8.68951i 0.946998 + 0.531789i
\(268\) −3.39228 8.00000i −0.207217 0.488678i
\(269\) 14.0000i 0.853595i 0.904347 + 0.426798i \(0.140358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(270\) 0 0
\(271\) 15.3110i 0.930080i 0.885290 + 0.465040i \(0.153960\pi\)
−0.885290 + 0.465040i \(0.846040\pi\)
\(272\) −5.56155 + 5.75058i −0.337219 + 0.348680i
\(273\) 23.3693 + 13.1231i 1.41438 + 0.794246i
\(274\) −6.43845 + 9.72350i −0.388961 + 0.587418i
\(275\) 0 0
\(276\) 0.142191 1.28020i 0.00855892 0.0770589i
\(277\) 23.3693i 1.40413i 0.712115 + 0.702063i \(0.247738\pi\)
−0.712115 + 0.702063i \(0.752262\pi\)
\(278\) 20.6847 + 13.6964i 1.24058 + 0.821457i
\(279\) −12.0818 + 7.36520i −0.723318 + 0.440943i
\(280\) 0 0
\(281\) 13.6155i 0.812234i −0.913821 0.406117i \(-0.866882\pi\)
0.913821 0.406117i \(-0.133118\pi\)
\(282\) −6.58200 + 3.37874i −0.391952 + 0.201201i
\(283\) 23.2111 1.37976 0.689879 0.723925i \(-0.257664\pi\)
0.689879 + 0.723925i \(0.257664\pi\)
\(284\) 2.64861 + 6.24621i 0.157166 + 0.370644i
\(285\) 0 0
\(286\) −8.00000 5.29723i −0.473050 0.313232i
\(287\) 3.39228i 0.200240i
\(288\) 12.2459 11.7490i 0.721596 0.692315i
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −9.06134 5.08842i −0.531185 0.298289i
\(292\) −15.1838 + 6.43845i −0.888562 + 0.376782i
\(293\) −2.49242 −0.145609 −0.0728044 0.997346i \(-0.523195\pi\)
−0.0728044 + 0.997346i \(0.523195\pi\)
\(294\) −2.37495 4.62656i −0.138510 0.269826i
\(295\) 0 0
\(296\) 2.64861 14.2462i 0.153948 0.828044i
\(297\) 6.87689 0.246211i 0.399038 0.0142866i
\(298\) −16.5081 10.9309i −0.956286 0.633208i
\(299\) −1.90495 −0.110166
\(300\) 0 0
\(301\) 23.3693 1.34699
\(302\) −8.68466 5.75058i −0.499746 0.330908i
\(303\) 1.32431 + 0.743668i 0.0760794 + 0.0427226i
\(304\) 3.80776 + 3.68260i 0.218390 + 0.211212i
\(305\) 0 0
\(306\) −8.47934 0.317399i −0.484732 0.0181445i
\(307\) −11.1293 −0.635184 −0.317592 0.948227i \(-0.602874\pi\)
−0.317592 + 0.948227i \(0.602874\pi\)
\(308\) 3.12311 + 7.36520i 0.177955 + 0.419671i
\(309\) −8.31534 + 14.8078i −0.473043 + 0.842384i
\(310\) 0 0
\(311\) −20.7713 −1.17783 −0.588916 0.808194i \(-0.700445\pi\)
−0.588916 + 0.808194i \(0.700445\pi\)
\(312\) −19.2688 16.0818i −1.09088 0.910452i
\(313\) 22.4924i 1.27135i 0.771958 + 0.635673i \(0.219278\pi\)
−0.771958 + 0.635673i \(0.780722\pi\)
\(314\) −3.97292 2.63068i −0.224205 0.148458i
\(315\) 0 0
\(316\) −14.9309 + 6.33122i −0.839927 + 0.356159i
\(317\) −16.7386 −0.940135 −0.470068 0.882630i \(-0.655770\pi\)
−0.470068 + 0.882630i \(0.655770\pi\)
\(318\) −13.6989 26.6863i −0.768196 1.49649i
\(319\) 4.13595i 0.231569i
\(320\) 0 0
\(321\) 4.56155 + 2.56155i 0.254601 + 0.142972i
\(322\) 1.32431 + 0.876894i 0.0738007 + 0.0488674i
\(323\) 2.64861i 0.147373i
\(324\) 17.9496 + 1.34567i 0.997202 + 0.0747592i
\(325\) 0 0
\(326\) −12.2448 + 18.4924i −0.678178 + 1.02420i
\(327\) 0.743668 1.32431i 0.0411249 0.0732343i
\(328\) 0.580639 3.12311i 0.0320604 0.172445i
\(329\) 9.12311i 0.502973i
\(330\) 0 0
\(331\) 3.22925i 0.177496i −0.996054 0.0887479i \(-0.971713\pi\)
0.996054 0.0887479i \(-0.0282865\pi\)
\(332\) 27.8078 11.7915i 1.52615 0.647141i
\(333\) 13.1231 8.00000i 0.719142 0.438397i
\(334\) 10.6847 + 7.07488i 0.584638 + 0.387120i
\(335\) 0 0
\(336\) 5.99267 + 20.0499i 0.326927 + 1.09381i
\(337\) 1.50758i 0.0821230i −0.999157 0.0410615i \(-0.986926\pi\)
0.999157 0.0410615i \(-0.0130740\pi\)
\(338\) −10.3423 + 15.6192i −0.562549 + 0.849574i
\(339\) −11.8730 + 21.1431i −0.644852 + 1.14834i
\(340\) 0 0
\(341\) 6.24621i 0.338251i
\(342\) −0.210167 + 5.61463i −0.0113645 + 0.303604i
\(343\) −14.7304 −0.795367
\(344\) −21.5150 4.00000i −1.16001 0.215666i
\(345\) 0 0
\(346\) −1.56155 + 2.35829i −0.0839496 + 0.126783i
\(347\) 22.6305i 1.21487i 0.794370 + 0.607434i \(0.207801\pi\)
−0.794370 + 0.607434i \(0.792199\pi\)
\(348\) 1.19429 10.7526i 0.0640208 0.576402i
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −0.952473 26.6034i −0.0508392 1.41998i
\(352\) −1.61463 7.31534i −0.0860599 0.389909i
\(353\) 20.2462 1.07760 0.538799 0.842435i \(-0.318878\pi\)
0.538799 + 0.842435i \(0.318878\pi\)
\(354\) 15.8283 + 30.8344i 0.841262 + 1.63883i
\(355\) 0 0
\(356\) 18.8664 8.00000i 0.999915 0.423999i
\(357\) 5.12311 9.12311i 0.271144 0.482846i
\(358\) −7.81855 + 11.8078i −0.413223 + 0.624060i
\(359\) 21.5150 1.13552 0.567758 0.823195i \(-0.307811\pi\)
0.567758 + 0.823195i \(0.307811\pi\)
\(360\) 0 0
\(361\) 17.2462 0.907695
\(362\) −9.56155 + 14.4401i −0.502544 + 0.758954i
\(363\) −7.84144 + 13.9638i −0.411569 + 0.732912i
\(364\) 28.4924 12.0818i 1.49341 0.633258i
\(365\) 0 0
\(366\) −3.49358 6.80571i −0.182612 0.355740i
\(367\) 10.9663 0.572436 0.286218 0.958165i \(-0.407602\pi\)
0.286218 + 0.958165i \(0.407602\pi\)
\(368\) −1.06913 1.03399i −0.0557323 0.0539003i
\(369\) 2.87689 1.75379i 0.149765 0.0912986i
\(370\) 0 0
\(371\) 36.9890 1.92038
\(372\) −1.80365 + 16.2389i −0.0935149 + 0.841947i
\(373\) 9.12311i 0.472377i 0.971707 + 0.236188i \(0.0758982\pi\)
−0.971707 + 0.236188i \(0.924102\pi\)
\(374\) −2.06798 + 3.12311i −0.106932 + 0.161492i
\(375\) 0 0
\(376\) −1.56155 + 8.39919i −0.0805309 + 0.433155i
\(377\) −16.0000 −0.824042
\(378\) −11.5841 + 18.9330i −0.595820 + 0.973807i
\(379\) 18.7033i 0.960725i −0.877070 0.480363i \(-0.840505\pi\)
0.877070 0.480363i \(-0.159495\pi\)
\(380\) 0 0
\(381\) −12.8078 + 22.8078i −0.656162 + 1.16848i
\(382\) 19.4470 29.3693i 0.994995 1.50266i
\(383\) 15.1022i 0.771688i −0.922564 0.385844i \(-0.873910\pi\)
0.922564 0.385844i \(-0.126090\pi\)
\(384\) −2.08533 19.4846i −0.106417 0.994322i
\(385\) 0 0
\(386\) 0.290319 + 0.192236i 0.0147769 + 0.00978455i
\(387\) −12.0818 19.8188i −0.614152 1.00745i
\(388\) −11.0478 + 4.68466i −0.560867 + 0.237827i
\(389\) 20.7386i 1.05149i −0.850642 0.525745i \(-0.823787\pi\)
0.850642 0.525745i \(-0.176213\pi\)
\(390\) 0 0
\(391\) 0.743668i 0.0376089i
\(392\) −5.90388 1.09763i −0.298191 0.0554388i
\(393\) −4.63068 + 8.24621i −0.233587 + 0.415966i
\(394\) 3.31534 5.00691i 0.167024 0.252244i
\(395\) 0 0
\(396\) 4.63159 6.45638i 0.232746 0.324445i
\(397\) 14.8769i 0.746650i 0.927701 + 0.373325i \(0.121782\pi\)
−0.927701 + 0.373325i \(0.878218\pi\)
\(398\) −6.43845 4.26324i −0.322730 0.213697i
\(399\) −6.04090 3.39228i −0.302423 0.169827i
\(400\) 0 0
\(401\) 24.0000i 1.19850i −0.800561 0.599251i \(-0.795465\pi\)
0.800561 0.599251i \(-0.204535\pi\)
\(402\) −4.86014 9.46786i −0.242402 0.472214i
\(403\) 24.1636 1.20367
\(404\) 1.61463 0.684658i 0.0803307 0.0340630i
\(405\) 0 0
\(406\) 11.1231 + 7.36520i 0.552030 + 0.365529i
\(407\) 6.78456i 0.336298i
\(408\) −6.27814 + 7.52230i −0.310814 + 0.372409i
\(409\) −25.3693 −1.25443 −0.627216 0.778845i \(-0.715806\pi\)
−0.627216 + 0.778845i \(0.715806\pi\)
\(410\) 0 0
\(411\) −6.99337 + 12.4536i −0.344957 + 0.614292i
\(412\) 7.65552 + 18.0540i 0.377161 + 0.889456i
\(413\) −42.7386 −2.10303
\(414\) 0.0590098 1.57645i 0.00290017 0.0774785i
\(415\) 0 0
\(416\) −28.2995 + 6.24621i −1.38750 + 0.306246i
\(417\) 26.4924 + 14.8769i 1.29734 + 0.728525i
\(418\) 2.06798 + 1.36932i 0.101148 + 0.0669755i
\(419\) 7.36520 0.359814 0.179907 0.983684i \(-0.442420\pi\)
0.179907 + 0.983684i \(0.442420\pi\)
\(420\) 0 0
\(421\) −25.3693 −1.23642 −0.618212 0.786011i \(-0.712143\pi\)
−0.618212 + 0.786011i \(0.712143\pi\)
\(422\) −19.8078 13.1158i −0.964227 0.638466i
\(423\) −7.73704 + 4.71659i −0.376188 + 0.229328i
\(424\) −34.0540 6.33122i −1.65381 0.307471i
\(425\) 0 0
\(426\) 3.79468 + 7.39228i 0.183853 + 0.358157i
\(427\) 9.43318 0.456503
\(428\) 5.56155 2.35829i 0.268828 0.113992i
\(429\) −10.2462 5.75379i −0.494692 0.277796i
\(430\) 0 0
\(431\) 16.6354 0.801297 0.400648 0.916232i \(-0.368785\pi\)
0.400648 + 0.916232i \(0.368785\pi\)
\(432\) 13.9055 15.4479i 0.669030 0.743236i
\(433\) 18.0000i 0.865025i −0.901628 0.432512i \(-0.857627\pi\)
0.901628 0.432512i \(-0.142373\pi\)
\(434\) −16.7984 11.1231i −0.806348 0.533926i
\(435\) 0 0
\(436\) −0.684658 1.61463i −0.0327892 0.0773266i
\(437\) 0.492423 0.0235558
\(438\) −17.9697 + 9.22440i −0.858626 + 0.440759i
\(439\) 9.27015i 0.442440i −0.975224 0.221220i \(-0.928996\pi\)
0.975224 0.221220i \(-0.0710039\pi\)
\(440\) 0 0
\(441\) −3.31534 5.43845i −0.157873 0.258974i
\(442\) 12.0818 + 8.00000i 0.574672 + 0.380521i
\(443\) 16.5896i 0.788195i −0.919069 0.394097i \(-0.871057\pi\)
0.919069 0.394097i \(-0.128943\pi\)
\(444\) 1.95910 17.6385i 0.0929750 0.837086i
\(445\) 0 0
\(446\) 6.49424 9.80776i 0.307511 0.464411i
\(447\) −21.1431 11.8730i −1.00004 0.561573i
\(448\) 22.5490 + 8.68466i 1.06534 + 0.410312i
\(449\) 27.3693i 1.29164i −0.763491 0.645819i \(-0.776516\pi\)
0.763491 0.645819i \(-0.223484\pi\)
\(450\) 0 0
\(451\) 1.48734i 0.0700359i
\(452\) 10.9309 + 25.7782i 0.514145 + 1.21250i
\(453\) −11.1231 6.24621i −0.522609 0.293473i
\(454\) −25.8078 17.0887i −1.21122 0.802012i
\(455\) 0 0
\(456\) 4.98091 + 4.15709i 0.233253 + 0.194674i
\(457\) 10.0000i 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) 12.6847 19.1567i 0.592715 0.895133i
\(459\) −10.3857 + 0.371834i −0.484761 + 0.0173557i
\(460\) 0 0
\(461\) 41.8617i 1.94970i −0.222872 0.974848i \(-0.571543\pi\)
0.222872 0.974848i \(-0.428457\pi\)
\(462\) 4.47449 + 8.71659i 0.208172 + 0.405532i
\(463\) 3.02045 0.140372 0.0701861 0.997534i \(-0.477641\pi\)
0.0701861 + 0.997534i \(0.477641\pi\)
\(464\) −8.97983 8.68466i −0.416878 0.403175i
\(465\) 0 0
\(466\) 7.80776 11.7915i 0.361688 0.546229i
\(467\) 2.27678i 0.105357i −0.998612 0.0526784i \(-0.983224\pi\)
0.998612 0.0526784i \(-0.0167758\pi\)
\(468\) −24.9766 17.9174i −1.15454 0.828231i
\(469\) 13.1231 0.605969
\(470\) 0 0
\(471\) −5.08842 2.85742i −0.234462 0.131663i
\(472\) 39.3473 + 7.31534i 1.81111 + 0.336716i
\(473\) −10.2462 −0.471121
\(474\) −17.6704 + 9.07077i −0.811629 + 0.416634i
\(475\) 0 0
\(476\) −4.71659 11.1231i −0.216184 0.509827i
\(477\) −19.1231 31.3693i −0.875587 1.43630i
\(478\) 13.5691 20.4924i 0.620637 0.937302i
\(479\) 25.6509 1.17202 0.586010 0.810304i \(-0.300698\pi\)
0.586010 + 0.810304i \(0.300698\pi\)
\(480\) 0 0
\(481\) −26.2462 −1.19672
\(482\) 10.4384 15.7644i 0.475458 0.718048i
\(483\) 1.69614 + 0.952473i 0.0771771 + 0.0433390i
\(484\) 7.21922 + 17.0251i 0.328147 + 0.773866i
\(485\) 0 0
\(486\) 22.0454 + 0.0358705i 0.999999 + 0.00162712i
\(487\) 25.2791 1.14550 0.572752 0.819728i \(-0.305876\pi\)
0.572752 + 0.819728i \(0.305876\pi\)
\(488\) −8.68466 1.61463i −0.393136 0.0730907i
\(489\) −13.3002 + 23.6847i −0.601455 + 1.07106i
\(490\) 0 0
\(491\) −26.9752 −1.21737 −0.608687 0.793410i \(-0.708304\pi\)
−0.608687 + 0.793410i \(0.708304\pi\)
\(492\) 0.429482 3.86677i 0.0193625 0.174328i
\(493\) 6.24621i 0.281315i
\(494\) 5.29723 8.00000i 0.238334 0.359937i
\(495\) 0 0
\(496\) 13.5616 + 13.1158i 0.608932 + 0.588916i
\(497\) −10.2462 −0.459605
\(498\) 32.9100 16.8937i 1.47473 0.757025i
\(499\) 32.2725i 1.44471i −0.691521 0.722357i \(-0.743059\pi\)
0.691521 0.722357i \(-0.256941\pi\)
\(500\) 0 0
\(501\) 13.6847 + 7.68466i 0.611385 + 0.343325i
\(502\) −14.6031 + 22.0540i −0.651769 + 0.984317i
\(503\) 14.3586i 0.640217i 0.947381 + 0.320109i \(0.103719\pi\)
−0.947381 + 0.320109i \(0.896281\pi\)
\(504\) 9.11578 + 23.9534i 0.406049 + 1.06697i
\(505\) 0 0
\(506\) −0.580639 0.384472i −0.0258125 0.0170919i
\(507\) −11.2337 + 20.0047i −0.498907 + 0.888442i
\(508\) 11.7915 + 27.8078i 0.523162 + 1.23377i
\(509\) 11.1231i 0.493023i 0.969140 + 0.246511i \(0.0792843\pi\)
−0.969140 + 0.246511i \(0.920716\pi\)
\(510\) 0 0
\(511\) 24.9073i 1.10183i
\(512\) −19.2732 11.8551i −0.851763 0.523927i
\(513\) 0.246211 + 6.87689i 0.0108705 + 0.303622i
\(514\) 23.8078 35.9551i 1.05012 1.58591i
\(515\) 0 0
\(516\) −26.6381 2.95869i −1.17268 0.130249i
\(517\) 4.00000i 0.175920i
\(518\) 18.2462 + 12.0818i 0.801692 + 0.530843i
\(519\) −1.69614 + 3.02045i −0.0744523 + 0.132583i
\(520\) 0 0
\(521\) 38.2462i 1.67560i 0.545980 + 0.837798i \(0.316158\pi\)
−0.545980 + 0.837798i \(0.683842\pi\)
\(522\) 0.495635 13.2409i 0.0216933 0.579540i
\(523\) −35.2929 −1.54325 −0.771625 0.636077i \(-0.780556\pi\)
−0.771625 + 0.636077i \(0.780556\pi\)
\(524\) 4.26324 + 10.0540i 0.186241 + 0.439210i
\(525\) 0 0
\(526\) −28.0540 18.5760i −1.22321 0.809954i
\(527\) 9.43318i 0.410916i
\(528\) −2.62747 8.79081i −0.114346 0.382571i
\(529\) 22.8617 0.993989
\(530\) 0 0
\(531\) 22.0956 + 36.2454i 0.958868 + 1.57292i
\(532\) −7.36520 + 3.12311i −0.319322 + 0.135404i
\(533\) −5.75379 −0.249224
\(534\) 22.3280 11.4616i 0.966227 0.495994i
\(535\) 0 0
\(536\) −12.0818 2.24621i −0.521854 0.0970215i
\(537\) −8.49242 + 15.1231i −0.366475 + 0.652610i
\(538\) 16.5081 + 10.9309i 0.711713 + 0.471263i
\(539\) −2.81164 −0.121106
\(540\) 0 0
\(541\) −26.9848 −1.16017 −0.580085 0.814556i \(-0.696980\pi\)
−0.580085 + 0.814556i \(0.696980\pi\)
\(542\) 18.0540 + 11.9545i 0.775485 + 0.513490i
\(543\) −10.3857 + 18.4945i −0.445691 + 0.793676i
\(544\) 2.43845 + 11.0478i 0.104548 + 0.473671i
\(545\) 0 0
\(546\) 33.7203 17.3097i 1.44309 0.740785i
\(547\) −5.83209 −0.249362 −0.124681 0.992197i \(-0.539791\pi\)
−0.124681 + 0.992197i \(0.539791\pi\)
\(548\) 6.43845 + 15.1838i 0.275037 + 0.648618i
\(549\) −4.87689 8.00000i −0.208141 0.341432i
\(550\) 0 0
\(551\) 4.13595 0.176197
\(552\) −1.39852 1.16721i −0.0595251 0.0496799i
\(553\) 24.4924i 1.04152i
\(554\) 27.5559 + 18.2462i 1.17074 + 0.775207i
\(555\) 0 0
\(556\) 32.3002 13.6964i 1.36983 0.580858i
\(557\) 36.2462 1.53580 0.767901 0.640569i \(-0.221301\pi\)
0.767901 + 0.640569i \(0.221301\pi\)
\(558\) −0.748519 + 19.9968i −0.0316874 + 0.846532i
\(559\) 39.6377i 1.67649i
\(560\) 0 0
\(561\) −2.24621 + 4.00000i −0.0948351 + 0.168880i
\(562\) −16.0547 10.6307i −0.677227 0.448428i
\(563\) 7.90007i 0.332948i −0.986046 0.166474i \(-0.946762\pi\)
0.986046 0.166474i \(-0.0532382\pi\)
\(564\) −1.15504 + 10.3992i −0.0486358 + 0.437885i
\(565\) 0 0
\(566\) 18.1227 27.3693i 0.761753 1.15042i
\(567\) −12.4536 + 24.1636i −0.523003 + 1.01478i
\(568\) 9.43318 + 1.75379i 0.395807 + 0.0735873i
\(569\) 13.1231i 0.550149i −0.961423 0.275075i \(-0.911297\pi\)
0.961423 0.275075i \(-0.0887026\pi\)
\(570\) 0 0
\(571\) 33.0161i 1.38168i 0.723007 + 0.690841i \(0.242759\pi\)
−0.723007 + 0.690841i \(0.757241\pi\)
\(572\) −12.4924 + 5.29723i −0.522334 + 0.221488i
\(573\) 21.1231 37.6155i 0.882430 1.57141i
\(574\) 4.00000 + 2.64861i 0.166957 + 0.110551i
\(575\) 0 0
\(576\) −4.29247 23.6130i −0.178853 0.983876i
\(577\) 32.2462i 1.34243i −0.741264 0.671214i \(-0.765773\pi\)
0.741264 0.671214i \(-0.234227\pi\)
\(578\) −10.1501 + 15.3289i −0.422188 + 0.637599i
\(579\) 0.371834 + 0.208805i 0.0154529 + 0.00867762i
\(580\) 0 0
\(581\) 45.6155i 1.89245i
\(582\) −13.0749 + 6.71174i −0.541971 + 0.278210i
\(583\) −16.2177 −0.671670
\(584\) −4.26324 + 22.9309i −0.176414 + 0.948886i
\(585\) 0 0
\(586\) −1.94602 + 2.93893i −0.0803895 + 0.121406i
\(587\) 1.85917i 0.0767362i −0.999264 0.0383681i \(-0.987784\pi\)
0.999264 0.0383681i \(-0.0122159\pi\)
\(588\) −7.30970 0.811887i −0.301447 0.0334817i
\(589\) −6.24621 −0.257371
\(590\) 0 0
\(591\) 3.60109 6.41273i 0.148129 0.263784i
\(592\) −14.7304 14.2462i −0.605416 0.585516i
\(593\) −8.24621 −0.338631 −0.169316 0.985562i \(-0.554156\pi\)
−0.169316 + 0.985562i \(0.554156\pi\)
\(594\) 5.07900 8.30111i 0.208394 0.340599i
\(595\) 0 0
\(596\) −25.7782 + 10.9309i −1.05592 + 0.447746i
\(597\) −8.24621 4.63068i −0.337495 0.189521i
\(598\) −1.48734 + 2.24621i −0.0608217 + 0.0918544i
\(599\) −44.1912 −1.80560 −0.902802 0.430056i \(-0.858494\pi\)
−0.902802 + 0.430056i \(0.858494\pi\)
\(600\) 0 0
\(601\) 23.1231 0.943211 0.471606 0.881810i \(-0.343675\pi\)
0.471606 + 0.881810i \(0.343675\pi\)
\(602\) 18.2462 27.5559i 0.743660 1.12309i
\(603\) −6.78456 11.1293i −0.276289 0.453221i
\(604\) −13.5616 + 5.75058i −0.551812 + 0.233988i
\(605\) 0 0
\(606\) 1.91088 0.980914i 0.0776243 0.0398469i
\(607\) −4.50778 −0.182965 −0.0914827 0.995807i \(-0.529161\pi\)
−0.0914827 + 0.995807i \(0.529161\pi\)
\(608\) 7.31534 1.61463i 0.296676 0.0654817i
\(609\) 14.2462 + 8.00000i 0.577286 + 0.324176i
\(610\) 0 0
\(611\) 15.4741 0.626014
\(612\) −6.99473 + 9.75058i −0.282745 + 0.394144i
\(613\) 9.12311i 0.368479i −0.982881 0.184239i \(-0.941018\pi\)
0.982881 0.184239i \(-0.0589822\pi\)
\(614\) −8.68951 + 13.1231i −0.350680 + 0.529605i
\(615\) 0 0
\(616\) 11.1231 + 2.06798i 0.448163 + 0.0833211i
\(617\) −14.0000 −0.563619 −0.281809 0.959470i \(-0.590935\pi\)
−0.281809 + 0.959470i \(0.590935\pi\)
\(618\) 10.9681 + 21.3666i 0.441202 + 0.859489i
\(619\) 28.1365i 1.13090i 0.824782 + 0.565451i \(0.191298\pi\)
−0.824782 + 0.565451i \(0.808702\pi\)
\(620\) 0 0
\(621\) −0.0691303 1.93087i −0.00277410 0.0774831i
\(622\) −16.2177 + 24.4924i −0.650272 + 0.982057i
\(623\) 30.9481i 1.23991i
\(624\) −34.0074 + 10.1644i −1.36139 + 0.406902i
\(625\) 0 0
\(626\) 26.5219 + 17.5616i 1.06003 + 0.701901i
\(627\) 2.64861 + 1.48734i 0.105775 + 0.0593985i
\(628\) −6.20393 + 2.63068i −0.247564 + 0.104976i
\(629\) 10.2462i 0.408543i
\(630\) 0 0
\(631\) 39.8007i 1.58444i 0.610235 + 0.792220i \(0.291075\pi\)
−0.610235 + 0.792220i \(0.708925\pi\)
\(632\) −4.19224 + 22.5490i −0.166758 + 0.896949i
\(633\) −25.3693 14.2462i −1.00834 0.566236i
\(634\) −13.0691 + 19.7373i −0.519041 + 0.783869i
\(635\) 0 0
\(636\) −42.1628 4.68302i −1.67187 0.185694i
\(637\) 10.8769i 0.430958i
\(638\) −4.87689 3.22925i −0.193078 0.127847i
\(639\) 5.29723 + 8.68951i 0.209555 + 0.343752i
\(640\) 0 0
\(641\) 6.38447i 0.252171i 0.992019 + 0.126086i \(0.0402414\pi\)
−0.992019 + 0.126086i \(0.959759\pi\)
\(642\) 6.58200 3.37874i 0.259771 0.133348i
\(643\) 3.60109 0.142013 0.0710065 0.997476i \(-0.477379\pi\)
0.0710065 + 0.997476i \(0.477379\pi\)
\(644\) 2.06798 0.876894i 0.0814896 0.0345545i
\(645\) 0 0
\(646\) −3.12311 2.06798i −0.122877 0.0813634i
\(647\) 36.6172i 1.43957i 0.694197 + 0.719786i \(0.255760\pi\)
−0.694197 + 0.719786i \(0.744240\pi\)
\(648\) 15.6014 20.1146i 0.612880 0.790176i
\(649\) 18.7386 0.735556
\(650\) 0 0
\(651\) −21.5150 12.0818i −0.843238 0.473523i
\(652\) 12.2448 + 28.8769i 0.479544 + 1.13091i
\(653\) 38.9848 1.52559 0.762797 0.646638i \(-0.223825\pi\)
0.762797 + 0.646638i \(0.223825\pi\)
\(654\) −0.980914 1.91088i −0.0383568 0.0747214i
\(655\) 0 0
\(656\) −3.22925 3.12311i −0.126081 0.121937i
\(657\) −21.1231 + 12.8769i −0.824091 + 0.502375i
\(658\) −10.7575 7.12311i −0.419370 0.277688i
\(659\) 24.7442 0.963898 0.481949 0.876199i \(-0.339929\pi\)
0.481949 + 0.876199i \(0.339929\pi\)
\(660\) 0 0
\(661\) 28.1080 1.09327 0.546636 0.837370i \(-0.315908\pi\)
0.546636 + 0.837370i \(0.315908\pi\)
\(662\) −3.80776 2.52132i −0.147993 0.0979940i
\(663\) 15.4741 + 8.68951i 0.600963 + 0.337473i
\(664\) 7.80776 41.9960i 0.303000 1.62976i
\(665\) 0 0
\(666\) 0.813033 21.7203i 0.0315044 0.841644i
\(667\) −1.16128 −0.0449648
\(668\) 16.6847 7.07488i 0.645549 0.273735i
\(669\) 7.05398 12.5616i 0.272722 0.485658i
\(670\) 0 0
\(671\) −4.13595 −0.159667
\(672\) 28.3207 + 8.58821i 1.09249 + 0.331298i
\(673\) 22.4924i 0.867019i −0.901149 0.433510i \(-0.857275\pi\)
0.901149 0.433510i \(-0.142725\pi\)
\(674\) −1.77766 1.17708i −0.0684727 0.0453395i
\(675\) 0 0
\(676\) 10.3423 + 24.3903i 0.397782 + 0.938087i
\(677\) 1.50758 0.0579409 0.0289705 0.999580i \(-0.490777\pi\)
0.0289705 + 0.999580i \(0.490777\pi\)
\(678\) 15.6607 + 30.5081i 0.601446 + 1.17166i
\(679\) 18.1227i 0.695485i
\(680\) 0 0
\(681\) −33.0540 18.5616i −1.26663 0.711280i
\(682\) 7.36520 + 4.87689i 0.282028 + 0.186746i
\(683\) 7.90007i 0.302288i 0.988512 + 0.151144i \(0.0482957\pi\)
−0.988512 + 0.151144i \(0.951704\pi\)
\(684\) 6.45638 + 4.63159i 0.246866 + 0.177093i
\(685\) 0 0
\(686\) −11.5012 + 17.3693i −0.439116 + 0.663164i
\(687\) 13.7779 24.5354i 0.525661 0.936085i
\(688\) −21.5150 + 22.2462i −0.820251 + 0.848129i
\(689\) 62.7386i 2.39015i
\(690\) 0 0
\(691\) 18.2857i 0.695621i −0.937565 0.347811i \(-0.886925\pi\)
0.937565 0.347811i \(-0.113075\pi\)
\(692\) 1.56155 + 3.68260i 0.0593613 + 0.139991i
\(693\) 6.24621 + 10.2462i 0.237274 + 0.389221i
\(694\) 26.6847 + 17.6693i 1.01294 + 0.670719i
\(695\) 0 0
\(696\) −11.7465 9.80365i −0.445249 0.371606i
\(697\) 2.24621i 0.0850813i
\(698\) 10.9309 16.5081i 0.413740 0.624839i
\(699\) 8.48071 15.1022i 0.320770 0.571219i
\(700\) 0 0
\(701\) 17.5076i 0.661252i −0.943762 0.330626i \(-0.892740\pi\)
0.943762 0.330626i \(-0.107260\pi\)
\(702\) −32.1130 19.6482i −1.21203 0.741573i
\(703\) 6.78456 0.255885
\(704\) −9.88653 3.80776i −0.372612 0.143511i
\(705\) 0 0
\(706\) 15.8078 23.8733i 0.594933 0.898482i
\(707\) 2.64861i 0.0996114i
\(708\) 48.7167 + 5.41095i 1.83088 + 0.203356i
\(709\) −6.49242 −0.243828 −0.121914 0.992541i \(-0.538903\pi\)
−0.121914 + 0.992541i \(0.538903\pi\)
\(710\) 0 0
\(711\) −20.7713 + 12.6624i −0.778985 + 0.474878i
\(712\) 5.29723 28.4924i 0.198522 1.06780i
\(713\) 1.75379 0.0656799
\(714\) −6.75748 13.1640i −0.252893 0.492650i
\(715\) 0 0
\(716\) 7.81855 + 18.4384i 0.292193 + 0.689077i
\(717\) 14.7386 26.2462i 0.550424 0.980183i
\(718\) 16.7984 25.3693i 0.626910 0.946774i
\(719\) −30.9481 −1.15417 −0.577086 0.816684i \(-0.695810\pi\)
−0.577086 + 0.816684i \(0.695810\pi\)
\(720\) 0 0
\(721\) −29.6155 −1.10294
\(722\) 13.4654 20.3358i 0.501132 0.756821i
\(723\) 11.3381 20.1907i 0.421669 0.750899i
\(724\) 9.56155 + 22.5490i 0.355352 + 0.838025i
\(725\) 0 0
\(726\) 10.3430 + 20.1489i 0.383866 + 0.747794i
\(727\) −10.9663 −0.406717 −0.203359 0.979104i \(-0.565186\pi\)
−0.203359 + 0.979104i \(0.565186\pi\)
\(728\) 8.00000 43.0299i 0.296500 1.59480i
\(729\) 26.9309 1.93087i 0.997440 0.0715137i
\(730\) 0 0
\(731\) 15.4741 0.572329
\(732\) −10.7526 1.19429i −0.397429 0.0441423i
\(733\) 26.8769i 0.992721i 0.868117 + 0.496360i \(0.165331\pi\)
−0.868117 + 0.496360i \(0.834669\pi\)
\(734\) 8.56222 12.9309i 0.316037 0.477287i
\(735\) 0 0
\(736\) −2.05398 + 0.453349i −0.0757105 + 0.0167107i
\(737\) −5.75379 −0.211944
\(738\) 0.178236 4.76160i 0.00656096 0.175277i
\(739\) 26.9752i 0.992300i −0.868237 0.496150i \(-0.834747\pi\)
0.868237 0.496150i \(-0.165253\pi\)
\(740\) 0 0
\(741\) 5.75379 10.2462i 0.211371 0.376404i
\(742\) 28.8802 43.6155i 1.06022 1.60118i
\(743\) 9.80501i 0.359711i −0.983693 0.179856i \(-0.942437\pi\)
0.983693 0.179856i \(-0.0575630\pi\)
\(744\) 17.7398 + 14.8057i 0.650372 + 0.542804i
\(745\) 0 0
\(746\) 10.7575 + 7.12311i 0.393860 + 0.260795i
\(747\) 38.6852 23.5829i 1.41542 0.862855i
\(748\) 2.06798 + 4.87689i 0.0756127 + 0.178317i
\(749\) 9.12311i 0.333351i
\(750\) 0 0
\(751\) 11.5012i 0.419683i −0.977735 0.209842i \(-0.932705\pi\)
0.977735 0.209842i \(-0.0672948\pi\)
\(752\) 8.68466 + 8.39919i 0.316697 + 0.306287i
\(753\) −15.8617 + 28.2462i −0.578034 + 1.02935i
\(754\) −12.4924 + 18.8664i −0.454947 + 0.687072i
\(755\) 0 0
\(756\) 13.2802 + 28.4417i 0.482996 + 1.03442i
\(757\) 10.8769i 0.395327i 0.980270 + 0.197664i \(0.0633354\pi\)
−0.980270 + 0.197664i \(0.936665\pi\)
\(758\) −22.0540 14.6031i −0.801036 0.530409i
\(759\) −0.743668 0.417609i −0.0269934 0.0151582i
\(760\) 0 0
\(761\) 31.2311i 1.13212i 0.824362 + 0.566062i \(0.191534\pi\)
−0.824362 + 0.566062i \(0.808466\pi\)
\(762\) 16.8937 + 32.9100i 0.611995 + 1.19220i
\(763\) 2.64861 0.0958863
\(764\) −19.4470 45.8617i −0.703568 1.65922i
\(765\) 0 0
\(766\) −17.8078 11.7915i −0.643421 0.426043i
\(767\) 72.4908i 2.61749i
\(768\) −24.6034 12.7542i −0.887800 0.460229i
\(769\) −38.9848 −1.40583 −0.702915 0.711274i \(-0.748118\pi\)
−0.702915 + 0.711274i \(0.748118\pi\)
\(770\) 0 0
\(771\) 25.8597 46.0504i 0.931315 1.65846i
\(772\) 0.453349 0.192236i 0.0163164 0.00691872i
\(773\) 0.246211 0.00885560 0.00442780 0.999990i \(-0.498591\pi\)
0.00442780 + 0.999990i \(0.498591\pi\)
\(774\) −32.8025 1.22786i −1.17906 0.0441346i
\(775\) 0 0
\(776\) −3.10196 + 16.6847i −0.111354 + 0.598944i
\(777\) 23.3693 + 13.1231i 0.838370 + 0.470789i
\(778\) −24.4539 16.1922i −0.876715 0.580520i
\(779\) 1.48734 0.0532894
\(780\) 0 0
\(781\) 4.49242 0.160752
\(782\) 0.876894 + 0.580639i 0.0313577 + 0.0207636i
\(783\) −0.580639 16.2177i −0.0207503 0.579575i
\(784\) −5.90388 + 6.10454i −0.210853 + 0.218019i
\(785\) 0 0
\(786\) 6.10797 + 11.8987i 0.217864 + 0.424413i
\(787\) −42.0775 −1.49990 −0.749950 0.661495i \(-0.769922\pi\)
−0.749950 + 0.661495i \(0.769922\pi\)
\(788\) −3.31534 7.81855i −0.118104 0.278524i
\(789\) −35.9309 20.1771i −1.27917 0.718323i
\(790\) 0 0
\(791\) −42.2863 −1.50353
\(792\) −3.99679 10.5023i −0.142020 0.373183i
\(793\) 16.0000i 0.568177i
\(794\) 17.5420 + 11.6155i 0.622544 + 0.412220i
\(795\) 0 0
\(796\) −10.0540 + 4.26324i −0.356354 + 0.151107i
\(797\) 12.7386 0.451226 0.225613 0.974217i \(-0.427562\pi\)
0.225613 + 0.974217i \(0.427562\pi\)
\(798\) −8.71659 + 4.47449i −0.308564 + 0.158395i
\(799\) 6.04090i 0.213712i
\(800\) 0 0
\(801\) 26.2462 16.0000i 0.927364 0.565332i
\(802\) −28.2995 18.7386i −0.999291 0.661684i
\(803\) 10.9205i 0.385377i
\(804\) −14.9587 1.66146i −0.527552 0.0585951i
\(805\) 0 0
\(806\) 18.8664 28.4924i 0.664539 1.00360i
\(807\) 21.1431 + 11.8730i 0.744274 + 0.417949i
\(808\) 0.453349 2.43845i 0.0159488 0.0857843i
\(809\) 29.7538i 1.04609i −0.852306 0.523044i \(-0.824796\pi\)
0.852306 0.523044i \(-0.175204\pi\)
\(810\) 0 0
\(811\) 46.2592i 1.62438i −0.583393 0.812190i \(-0.698275\pi\)
0.583393 0.812190i \(-0.301725\pi\)
\(812\) 17.3693 7.36520i 0.609544 0.258468i
\(813\) 23.1231 + 12.9848i 0.810963 + 0.455398i
\(814\) −8.00000 5.29723i −0.280400 0.185668i
\(815\) 0 0
\(816\) 3.96807 + 13.2761i 0.138910 + 0.464756i
\(817\) 10.2462i 0.358470i
\(818\) −19.8078 + 29.9142i −0.692562 + 1.04592i
\(819\) 39.6377 24.1636i 1.38505 0.844344i
\(820\) 0 0
\(821\) 53.2311i 1.85778i −0.370360 0.928888i \(-0.620766\pi\)
0.370360 0.928888i \(-0.379234\pi\)
\(822\) 9.22440 + 17.9697i 0.321738 + 0.626766i
\(823\) 48.2814 1.68298 0.841492 0.540270i \(-0.181678\pi\)
0.841492 + 0.540270i \(0.181678\pi\)
\(824\) 27.2655 + 5.06913i 0.949840 + 0.176592i
\(825\) 0 0
\(826\) −33.3693 + 50.3951i −1.16107 + 1.75347i
\(827\) 17.7509i 0.617258i 0.951183 + 0.308629i \(0.0998701\pi\)
−0.951183 + 0.308629i \(0.900130\pi\)
\(828\) −1.81280 1.30044i −0.0629991 0.0451934i
\(829\) 8.87689 0.308307 0.154154 0.988047i \(-0.450735\pi\)
0.154154 + 0.988047i \(0.450735\pi\)
\(830\) 0 0
\(831\) 35.2929 + 19.8188i 1.22430 + 0.687508i
\(832\) −14.7304 + 38.2462i −0.510685 + 1.32595i
\(833\) 4.24621 0.147122
\(834\) 38.2267 19.6229i 1.32368 0.679487i
\(835\) 0 0
\(836\) 3.22925 1.36932i 0.111686 0.0473588i
\(837\) 0.876894 + 24.4924i 0.0303099 + 0.846582i
\(838\) 5.75058 8.68466i 0.198650 0.300007i
\(839\) −17.7051 −0.611247 −0.305624 0.952152i \(-0.598865\pi\)
−0.305624 + 0.952152i \(0.598865\pi\)
\(840\) 0 0
\(841\) 19.2462 0.663662
\(842\) −19.8078 + 29.9142i −0.682621 + 1.03091i
\(843\) −20.5625 11.5469i −0.708210 0.397697i
\(844\) −30.9309 + 13.1158i −1.06468 + 0.451464i
\(845\) 0 0
\(846\) −0.479343 + 12.8057i −0.0164802 + 0.440269i
\(847\) −27.9277 −0.959607
\(848\) −34.0540 + 35.2114i −1.16942 + 1.20916i
\(849\) 19.6847 35.0540i 0.675576 1.20305i
\(850\) 0 0
\(851\) −1.90495 −0.0653007
\(852\) 11.6794 + 1.29723i 0.400129 + 0.0444423i
\(853\) 7.86174i 0.269181i 0.990901 + 0.134590i \(0.0429719\pi\)
−0.990901 + 0.134590i \(0.957028\pi\)
\(854\) 7.36520 11.1231i 0.252032 0.380625i
\(855\) 0 0
\(856\) 1.56155 8.39919i 0.0533728 0.287078i
\(857\) −20.7386 −0.708418 −0.354209 0.935166i \(-0.615250\pi\)
−0.354209 + 0.935166i \(0.615250\pi\)
\(858\) −14.7846 + 7.58937i −0.504737 + 0.259097i
\(859\) 33.4337i 1.14074i 0.821386 + 0.570372i \(0.193201\pi\)
−0.821386 + 0.570372i \(0.806799\pi\)
\(860\) 0 0
\(861\) 5.12311 + 2.87689i 0.174595 + 0.0980443i
\(862\) 12.9885 19.6155i 0.442390 0.668108i
\(863\) 10.5487i 0.359081i 0.983751 + 0.179541i \(0.0574611\pi\)
−0.983751 + 0.179541i \(0.942539\pi\)
\(864\) −7.35820 28.4580i −0.250331 0.968160i
\(865\) 0 0
\(866\) −21.2247 14.0540i −0.721243 0.477574i
\(867\) −11.0249 + 19.6329i −0.374426 + 0.666769i
\(868\) −26.2316 + 11.1231i −0.890357 + 0.377543i
\(869\) 10.7386i 0.364283i
\(870\) 0 0
\(871\) 22.2586i 0.754205i
\(872\) −2.43845 0.453349i −0.0825762 0.0153523i
\(873\) −15.3693 + 9.36932i −0.520173 + 0.317103i
\(874\) 0.384472 0.580639i 0.0130050 0.0196404i
\(875\) 0 0
\(876\) −3.15340 + 28.3911i −0.106543 + 0.959247i
\(877\) 37.6155i 1.27019i 0.772436 + 0.635093i \(0.219038\pi\)
−0.772436 + 0.635093i \(0.780962\pi\)
\(878\) −10.9309 7.23791i −0.368899 0.244268i
\(879\) −2.11375 + 3.76412i −0.0712950 + 0.126960i
\(880\) 0 0
\(881\) 0.630683i 0.0212483i −0.999944 0.0106241i \(-0.996618\pi\)
0.999944 0.0106241i \(-0.00338183\pi\)
\(882\) −9.00127 0.336935i −0.303089 0.0113452i
\(883\) −22.4674 −0.756090 −0.378045 0.925787i \(-0.623403\pi\)
−0.378045 + 0.925787i \(0.623403\pi\)
\(884\) 18.8664 8.00000i 0.634544 0.269069i
\(885\) 0 0
\(886\) −19.5616 12.9527i −0.657183 0.435156i
\(887\) 51.6737i 1.73503i 0.497409 + 0.867516i \(0.334285\pi\)
−0.497409 + 0.867516i \(0.665715\pi\)
\(888\) −19.2688 16.0818i −0.646617 0.539670i
\(889\) −45.6155 −1.52990
\(890\) 0 0
\(891\) 5.46026 10.5945i 0.182925 0.354928i
\(892\) −6.49424 15.3153i −0.217443 0.512796i
\(893\) −4.00000 −0.133855
\(894\) −30.5081 + 15.6607i −1.02034 + 0.523773i
\(895\) 0 0
\(896\) 27.8462 19.8078i 0.930276 0.661731i
\(897\) −1.61553 + 2.87689i −0.0539409 + 0.0960567i
\(898\) −32.2725 21.3693i −1.07695 0.713103i
\(899\) 14.7304 0.491287
\(900\) 0 0
\(901\) 24.4924 0.815961
\(902\) −1.75379 1.16128i −0.0583948 0.0386663i
\(903\) 19.8188 35.2929i 0.659529 1.17447i
\(904\) 38.9309 + 7.23791i 1.29482 + 0.240729i
\(905\) 0 0
\(906\) −16.0499 + 8.23888i −0.533221 + 0.273719i
\(907\) 46.2134 1.53449 0.767246 0.641353i \(-0.221627\pi\)
0.767246 + 0.641353i \(0.221627\pi\)
\(908\) −40.3002 + 17.0887i −1.33741 + 0.567108i
\(909\) 2.24621 1.36932i 0.0745021 0.0454174i
\(910\) 0 0
\(911\) 14.3128 0.474204 0.237102 0.971485i \(-0.423802\pi\)
0.237102 + 0.971485i \(0.423802\pi\)
\(912\) 8.79081 2.62747i 0.291093 0.0870043i
\(913\) 20.0000i 0.661903i
\(914\) −11.7915 7.80776i −0.390027 0.258258i
\(915\) 0 0
\(916\) −12.6847 29.9142i −0.419113 0.988392i
\(917\) −16.4924 −0.544628
\(918\) −7.67042 + 12.5365i −0.253162 + 0.413767i
\(919\) 49.9775i 1.64861i 0.566148 + 0.824303i \(0.308433\pi\)
−0.566148 + 0.824303i \(0.691567\pi\)
\(920\) 0 0
\(921\) −9.43845 + 16.8078i −0.311007 + 0.553835i
\(922\) −49.3612 32.6847i −1.62562 1.07641i
\(923\) 17.3790i 0.572037i
\(924\) 13.7717 + 1.52962i 0.453056 + 0.0503209i
\(925\) 0 0
\(926\) 2.35829 3.56155i 0.0774984 0.117040i
\(927\) 15.3110 + 25.1161i 0.502881 + 0.824920i
\(928\) −17.2517 + 3.80776i −0.566316 + 0.124996i
\(929\) 33.1231i 1.08673i −0.839495 0.543367i \(-0.817149\pi\)
0.839495 0.543367i \(-0.182851\pi\)
\(930\) 0 0
\(931\) 2.81164i 0.0921479i
\(932\) −7.80776 18.4130i −0.255752 0.603138i
\(933\) −17.6155 + 31.3693i −0.576707 + 1.02699i
\(934\) −2.68466 1.77766i −0.0878447 0.0581667i
\(935\) 0 0
\(936\) −40.6284 + 15.4616i −1.32798 + 0.505380i
\(937\) 22.4924i 0.734795i −0.930064 0.367398i \(-0.880249\pi\)
0.930064 0.367398i \(-0.119751\pi\)
\(938\) 10.2462 15.4741i 0.334551 0.505246i
\(939\) 33.9686 + 19.0752i 1.10852 + 0.622494i
\(940\) 0 0
\(941\) 0.876894i 0.0285859i −0.999898 0.0142930i \(-0.995450\pi\)
0.999898 0.0142930i \(-0.00454975\pi\)
\(942\) −7.34224 + 3.76900i −0.239223 + 0.122800i
\(943\) −0.417609 −0.0135992
\(944\) 39.3473 40.6847i 1.28065 1.32417i
\(945\) 0 0
\(946\) −8.00000 + 12.0818i −0.260102 + 0.392813i
\(947\) 32.4813i 1.05550i −0.849400 0.527750i \(-0.823036\pi\)
0.849400 0.527750i \(-0.176964\pi\)
\(948\) −3.10088 + 27.9183i −0.100712 + 0.906743i
\(949\) 42.2462 1.37137
\(950\) 0 0
\(951\) −14.1955 + 25.2791i −0.460322 + 0.819731i
\(952\) −16.7984 3.12311i −0.544439 0.101220i
\(953\) 22.4924 0.728601 0.364301 0.931281i \(-0.381308\pi\)
0.364301 + 0.931281i \(0.381308\pi\)
\(954\) −51.9199 1.94347i −1.68097 0.0629220i
\(955\) 0 0
\(956\) −13.5691 32.0000i −0.438857 1.03495i
\(957\) −6.24621 3.50758i −0.201911 0.113384i
\(958\) 20.0276 30.2462i 0.647063 0.977211i
\(959\) −24.9073 −0.804297
\(960\) 0 0
\(961\) 8.75379 0.282380
\(962\) −20.4924 + 30.9481i −0.660702 + 0.997808i
\(963\) 7.73704 4.71659i 0.249323 0.151990i
\(964\) −10.4384 24.6169i −0.336200 0.792858i
\(965\) 0 0
\(966\) 2.44741 1.25633i 0.0787442 0.0404218i
\(967\) −26.4404 −0.850265 −0.425132 0.905131i \(-0.639772\pi\)
−0.425132 + 0.905131i \(0.639772\pi\)
\(968\) 25.7116 + 4.78023i 0.826404 + 0.153643i
\(969\) −4.00000 2.24621i −0.128499 0.0721587i
\(970\) 0 0
\(971\) −52.6261 −1.68885 −0.844427 0.535671i \(-0.820059\pi\)
−0.844427 + 0.535671i \(0.820059\pi\)
\(972\) 17.2548 25.9667i 0.553448 0.832884i
\(973\) 52.9848i 1.69862i
\(974\) 19.7373 29.8078i 0.632424 0.955102i
\(975\) 0 0
\(976\) −8.68466 + 8.97983i −0.277989 + 0.287437i
\(977\) 31.7538 1.01589 0.507947 0.861388i \(-0.330405\pi\)
0.507947 + 0.861388i \(0.330405\pi\)
\(978\) 17.5432 + 34.1753i 0.560971 + 1.09281i
\(979\) 13.5691i 0.433671i
\(980\) 0 0
\(981\) −1.36932 2.24621i −0.0437189 0.0717160i
\(982\) −21.0616 + 31.8078i −0.672103 + 1.01503i
\(983\) 40.0095i 1.27610i 0.769993 + 0.638052i \(0.220260\pi\)
−0.769993 + 0.638052i \(0.779740\pi\)
\(984\) −4.22417 3.52551i −0.134662 0.112389i
\(985\) 0 0
\(986\) 7.36520 + 4.87689i 0.234556 + 0.155312i
\(987\) −13.7779 7.73704i −0.438556 0.246273i
\(988\) −5.29723 12.4924i −0.168527 0.397437i
\(989\) 2.87689i 0.0914799i
\(990\) 0 0
\(991\) 33.0161i 1.04879i −0.851475 0.524396i \(-0.824291\pi\)
0.851475 0.524396i \(-0.175709\pi\)
\(992\) 26.0540 5.75058i 0.827215 0.182581i
\(993\) −4.87689 2.73863i −0.154764 0.0869079i
\(994\) −8.00000 + 12.0818i −0.253745 + 0.383211i
\(995\) 0 0
\(996\) 5.77518 51.9960i 0.182994 1.64755i
\(997\) 33.6155i 1.06461i −0.846551 0.532307i \(-0.821325\pi\)
0.846551 0.532307i \(-0.178675\pi\)
\(998\) −38.0540 25.1976i −1.20458 0.797615i
\(999\) −0.952473 26.6034i −0.0301349 0.841694i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 300.2.h.a.299.6 8
3.2 odd 2 300.2.h.b.299.4 8
4.3 odd 2 inner 300.2.h.a.299.7 8
5.2 odd 4 300.2.e.c.251.8 8
5.3 odd 4 60.2.e.a.11.1 8
5.4 even 2 300.2.h.b.299.3 8
12.11 even 2 300.2.h.b.299.1 8
15.2 even 4 300.2.e.c.251.1 8
15.8 even 4 60.2.e.a.11.8 yes 8
15.14 odd 2 inner 300.2.h.a.299.5 8
20.3 even 4 60.2.e.a.11.7 yes 8
20.7 even 4 300.2.e.c.251.2 8
20.19 odd 2 300.2.h.b.299.2 8
40.3 even 4 960.2.h.g.191.8 8
40.13 odd 4 960.2.h.g.191.1 8
60.23 odd 4 60.2.e.a.11.2 yes 8
60.47 odd 4 300.2.e.c.251.7 8
60.59 even 2 inner 300.2.h.a.299.8 8
120.53 even 4 960.2.h.g.191.7 8
120.83 odd 4 960.2.h.g.191.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.e.a.11.1 8 5.3 odd 4
60.2.e.a.11.2 yes 8 60.23 odd 4
60.2.e.a.11.7 yes 8 20.3 even 4
60.2.e.a.11.8 yes 8 15.8 even 4
300.2.e.c.251.1 8 15.2 even 4
300.2.e.c.251.2 8 20.7 even 4
300.2.e.c.251.7 8 60.47 odd 4
300.2.e.c.251.8 8 5.2 odd 4
300.2.h.a.299.5 8 15.14 odd 2 inner
300.2.h.a.299.6 8 1.1 even 1 trivial
300.2.h.a.299.7 8 4.3 odd 2 inner
300.2.h.a.299.8 8 60.59 even 2 inner
300.2.h.b.299.1 8 12.11 even 2
300.2.h.b.299.2 8 20.19 odd 2
300.2.h.b.299.3 8 5.4 even 2
300.2.h.b.299.4 8 3.2 odd 2
960.2.h.g.191.1 8 40.13 odd 4
960.2.h.g.191.2 8 120.83 odd 4
960.2.h.g.191.7 8 120.53 even 4
960.2.h.g.191.8 8 40.3 even 4