Properties

Label 300.2.x
Level $300$
Weight $2$
Character orbit 300.x
Rep. character $\chi_{300}(17,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $80$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.x (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 75 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(300, [\chi])\).

Total New Old
Modular forms 528 80 448
Cusp forms 432 80 352
Eisenstein series 96 0 96

Trace form

\( 80 q - 2 q^{3} + 4 q^{7} + 12 q^{13} + 10 q^{15} + 20 q^{19} + 40 q^{25} - 14 q^{27} - 20 q^{33} + 12 q^{37} - 40 q^{39} + 12 q^{43} - 60 q^{45} - 76 q^{57} - 98 q^{63} - 36 q^{67} - 70 q^{69} - 44 q^{73}+ \cdots - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(300, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
300.2.x.a 300.x 75.l $80$ $2.396$ None 300.2.x.a \(0\) \(-2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{20}]$

Decomposition of \(S_{2}^{\mathrm{old}}(300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)