Defining parameters
Level: | \( N \) | \(=\) | \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 300.x (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 75 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(300, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 528 | 80 | 448 |
Cusp forms | 432 | 80 | 352 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(300, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
300.2.x.a | $80$ | $2.396$ | None | \(0\) | \(-2\) | \(0\) | \(4\) |
Decomposition of \(S_{2}^{\mathrm{old}}(300, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)