Defining parameters
Level: | \( N \) | \(=\) | \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 300.l (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 60 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(7\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(300, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 152 | 112 |
Cusp forms | 216 | 136 | 80 |
Eisenstein series | 48 | 16 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(300, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(300, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(300, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)