Properties

Label 300.9.b.b.149.1
Level $300$
Weight $9$
Character 300.149
Analytic conductor $122.214$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,9,Mod(149,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.149");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 300.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(122.213583018\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 149.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 300.149
Dual form 300.9.b.b.149.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-81.0000i q^{3} +4034.00i q^{7} -6561.00 q^{9} +35806.0i q^{13} +258526. q^{19} +326754. q^{21} +531441. i q^{27} -1.80941e6 q^{31} +503522. i q^{37} +2.90029e6 q^{39} -3.49219e6i q^{43} -1.05084e7 q^{49} -2.09406e7i q^{57} -2.38265e7 q^{61} -2.64671e7i q^{63} -5.42141e6i q^{67} -1.61693e7i q^{73} +1.88870e7 q^{79} +4.30467e7 q^{81} -1.44441e8 q^{91} +1.46562e8i q^{93} +1.76908e8i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 13122 q^{9} + 517052 q^{19} + 653508 q^{21} - 3618812 q^{31} + 5800572 q^{39} - 21016710 q^{49} - 47653052 q^{61} + 37774076 q^{79} + 86093442 q^{81} - 288882808 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 81.0000i − 1.00000i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4034.00i 1.68013i 0.542483 + 0.840067i \(0.317484\pi\)
−0.542483 + 0.840067i \(0.682516\pi\)
\(8\) 0 0
\(9\) −6561.00 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 35806.0i 1.25367i 0.779153 + 0.626834i \(0.215650\pi\)
−0.779153 + 0.626834i \(0.784350\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 258526. 1.98376 0.991882 0.127165i \(-0.0405878\pi\)
0.991882 + 0.127165i \(0.0405878\pi\)
\(20\) 0 0
\(21\) 326754. 1.68013
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 531441.i 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −1.80941e6 −1.95925 −0.979624 0.200842i \(-0.935632\pi\)
−0.979624 + 0.200842i \(0.935632\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 503522.i 0.268665i 0.990936 + 0.134333i \(0.0428891\pi\)
−0.990936 + 0.134333i \(0.957111\pi\)
\(38\) 0 0
\(39\) 2.90029e6 1.25367
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) − 3.49219e6i − 1.02147i −0.859739 0.510734i \(-0.829374\pi\)
0.859739 0.510734i \(-0.170626\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −1.05084e7 −1.82285
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.09406e7i − 1.98376i
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −2.38265e7 −1.72084 −0.860422 0.509583i \(-0.829800\pi\)
−0.860422 + 0.509583i \(0.829800\pi\)
\(62\) 0 0
\(63\) − 2.64671e7i − 1.68013i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 5.42141e6i − 0.269037i −0.990911 0.134519i \(-0.957051\pi\)
0.990911 0.134519i \(-0.0429488\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) − 1.61693e7i − 0.569376i −0.958620 0.284688i \(-0.908110\pi\)
0.958620 0.284688i \(-0.0918900\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.88870e7 0.484904 0.242452 0.970163i \(-0.422048\pi\)
0.242452 + 0.970163i \(0.422048\pi\)
\(80\) 0 0
\(81\) 4.30467e7 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −1.44441e8 −2.10633
\(92\) 0 0
\(93\) 1.46562e8i 1.95925i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.76908e8i 1.99830i 0.0412262 + 0.999150i \(0.486874\pi\)
−0.0412262 + 0.999150i \(0.513126\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) − 4.44490e7i − 0.394923i −0.980311 0.197462i \(-0.936730\pi\)
0.980311 0.197462i \(-0.0632698\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −2.03181e8 −1.43938 −0.719692 0.694293i \(-0.755717\pi\)
−0.719692 + 0.694293i \(0.755717\pi\)
\(110\) 0 0
\(111\) 4.07853e7 0.268665
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 2.34923e8i − 1.25367i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.14359e8 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 4.00562e8i − 1.53977i −0.638185 0.769883i \(-0.720314\pi\)
0.638185 0.769883i \(-0.279686\pi\)
\(128\) 0 0
\(129\) −2.82868e8 −1.02147
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 1.04289e9i 3.33299i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −7.09431e8 −1.90043 −0.950213 0.311602i \(-0.899135\pi\)
−0.950213 + 0.311602i \(0.899135\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 8.51177e8i 1.82285i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 2.70234e8 0.519796 0.259898 0.965636i \(-0.416311\pi\)
0.259898 + 0.965636i \(0.416311\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.61735e7i 0.0595376i 0.999557 + 0.0297688i \(0.00947711\pi\)
−0.999557 + 0.0297688i \(0.990523\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.17139e9i 1.65940i 0.558212 + 0.829698i \(0.311488\pi\)
−0.558212 + 0.829698i \(0.688512\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −4.66339e8 −0.571682
\(170\) 0 0
\(171\) −1.69619e9 −1.98376
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −1.05268e9 −0.980801 −0.490400 0.871497i \(-0.663149\pi\)
−0.490400 + 0.871497i \(0.663149\pi\)
\(182\) 0 0
\(183\) 1.92995e9i 1.72084i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.14383e9 −1.68013
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) − 2.32670e9i − 1.67691i −0.544968 0.838457i \(-0.683458\pi\)
0.544968 0.838457i \(-0.316542\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −1.73472e9 −1.10616 −0.553080 0.833128i \(-0.686548\pi\)
−0.553080 + 0.833128i \(0.686548\pi\)
\(200\) 0 0
\(201\) −4.39134e8 −0.269037
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.83711e8 −0.0926840 −0.0463420 0.998926i \(-0.514756\pi\)
−0.0463420 + 0.998926i \(0.514756\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 7.29914e9i − 3.29180i
\(218\) 0 0
\(219\) −1.30971e9 −0.569376
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.72732e9i 1.91159i 0.294027 + 0.955797i \(0.405004\pi\)
−0.294027 + 0.955797i \(0.594996\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −5.35877e9 −1.94860 −0.974302 0.225247i \(-0.927681\pi\)
−0.974302 + 0.225247i \(0.927681\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 1.52985e9i − 0.484904i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −5.56578e9 −1.64990 −0.824951 0.565204i \(-0.808797\pi\)
−0.824951 + 0.565204i \(0.808797\pi\)
\(242\) 0 0
\(243\) − 3.48678e9i − 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9.25678e9i 2.48698i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −2.03121e9 −0.451393
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) −2.98709e9 −0.553824 −0.276912 0.960895i \(-0.589311\pi\)
−0.276912 + 0.960895i \(0.589311\pi\)
\(272\) 0 0
\(273\) 1.16998e10i 2.10633i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.42807e9i 1.26170i 0.775904 + 0.630852i \(0.217294\pi\)
−0.775904 + 0.630852i \(0.782706\pi\)
\(278\) 0 0
\(279\) 1.18715e10 1.95925
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 1.03697e10i 1.61667i 0.588723 + 0.808335i \(0.299631\pi\)
−0.588723 + 0.808335i \(0.700369\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −6.97576e9 −1.00000
\(290\) 0 0
\(291\) 1.43296e10 1.99830
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.40875e10 1.71620
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.41256e10i − 1.59020i −0.606478 0.795101i \(-0.707418\pi\)
0.606478 0.795101i \(-0.292582\pi\)
\(308\) 0 0
\(309\) −3.60037e9 −0.394923
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) − 1.17006e10i − 1.21908i −0.792755 0.609541i \(-0.791354\pi\)
0.792755 0.609541i \(-0.208646\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.64576e10i 1.43938i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.62495e10 −1.35372 −0.676858 0.736113i \(-0.736659\pi\)
−0.676858 + 0.736113i \(0.736659\pi\)
\(332\) 0 0
\(333\) − 3.30361e9i − 0.268665i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 2.57689e10i − 1.99791i −0.0456520 0.998957i \(-0.514537\pi\)
0.0456520 0.998957i \(-0.485463\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 1.91355e10i − 1.38249i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 2.96004e10 1.99524 0.997621 0.0689403i \(-0.0219618\pi\)
0.997621 + 0.0689403i \(0.0219618\pi\)
\(350\) 0 0
\(351\) −1.90288e10 −1.25367
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 4.98521e10 2.93532
\(362\) 0 0
\(363\) − 1.73631e10i − 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.43056e10i 1.33981i 0.742448 + 0.669903i \(0.233664\pi\)
−0.742448 + 0.669903i \(0.766336\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 4.94467e9i − 0.255448i −0.991810 0.127724i \(-0.959233\pi\)
0.991810 0.127724i \(-0.0407672\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 3.49200e9 0.169245 0.0846227 0.996413i \(-0.473032\pi\)
0.0846227 + 0.996413i \(0.473032\pi\)
\(380\) 0 0
\(381\) −3.24455e10 −1.53977
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.29123e10i 1.02147i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 1.57611e10i − 0.634491i −0.948343 0.317245i \(-0.897242\pi\)
0.948343 0.317245i \(-0.102758\pi\)
\(398\) 0 0
\(399\) 8.44744e10 3.33299
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) − 6.47876e10i − 2.45624i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 5.26810e10 1.88261 0.941305 0.337556i \(-0.109600\pi\)
0.941305 + 0.337556i \(0.109600\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.74639e10i 1.90043i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −1.16089e10 −0.369541 −0.184771 0.982782i \(-0.559154\pi\)
−0.184771 + 0.982782i \(0.559154\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 9.61162e10i − 2.89125i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) − 6.51683e10i − 1.85389i −0.375192 0.926947i \(-0.622423\pi\)
0.375192 0.926947i \(-0.377577\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −6.75493e10 −1.81871 −0.909354 0.416024i \(-0.863423\pi\)
−0.909354 + 0.416024i \(0.863423\pi\)
\(440\) 0 0
\(441\) 6.89453e10 1.82285
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 2.18890e10i − 0.519796i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.72608e10i − 0.624991i −0.949919 0.312495i \(-0.898835\pi\)
0.949919 0.312495i \(-0.101165\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 6.87853e10i 1.49683i 0.663232 + 0.748413i \(0.269184\pi\)
−0.663232 + 0.748413i \(0.730816\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 2.18700e10 0.452019
\(470\) 0 0
\(471\) 2.93005e9 0.0595376
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) −1.80291e10 −0.336817
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.09984e10i 1.61777i 0.587965 + 0.808887i \(0.299929\pi\)
−0.587965 + 0.808887i \(0.700071\pi\)
\(488\) 0 0
\(489\) 9.48824e10 1.65940
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.23330e11 −1.98915 −0.994574 0.104032i \(-0.966826\pi\)
−0.994574 + 0.104032i \(0.966826\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.77735e10i 0.571682i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 6.52269e10 0.956628
\(512\) 0 0
\(513\) 1.37391e11i 1.98376i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) − 2.44747e10i − 0.327122i −0.986533 0.163561i \(-0.947702\pi\)
0.986533 0.163561i \(-0.0522981\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.83110e10 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 6.27323e10 0.732322 0.366161 0.930551i \(-0.380672\pi\)
0.366161 + 0.930551i \(0.380672\pi\)
\(542\) 0 0
\(543\) 8.52668e10i 0.980801i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 6.18266e10i − 0.690599i −0.938492 0.345300i \(-0.887777\pi\)
0.938492 0.345300i \(-0.112223\pi\)
\(548\) 0 0
\(549\) 1.56326e11 1.72084
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 7.61903e10i 0.814703i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 1.25041e11 1.28058
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.73650e11i 1.68013i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −1.94939e11 −1.83381 −0.916907 0.399102i \(-0.869322\pi\)
−0.916907 + 0.399102i \(0.869322\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1.54299e11i − 1.39206i −0.718012 0.696031i \(-0.754948\pi\)
0.718012 0.696031i \(-0.245052\pi\)
\(578\) 0 0
\(579\) −1.88462e11 −1.67691
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −4.67778e11 −3.88668
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.40513e11i 1.10616i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −6.22607e10 −0.477217 −0.238608 0.971116i \(-0.576691\pi\)
−0.238608 + 0.971116i \(0.576691\pi\)
\(602\) 0 0
\(603\) 3.55698e10i 0.269037i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 2.65989e11i − 1.95933i −0.200634 0.979666i \(-0.564300\pi\)
0.200634 0.979666i \(-0.435700\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.57998e10i 0.111894i 0.998434 + 0.0559472i \(0.0178179\pi\)
−0.998434 + 0.0559472i \(0.982182\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −2.25533e11 −1.53620 −0.768100 0.640330i \(-0.778797\pi\)
−0.768100 + 0.640330i \(0.778797\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −2.00069e11 −1.26201 −0.631004 0.775780i \(-0.717357\pi\)
−0.631004 + 0.775780i \(0.717357\pi\)
\(632\) 0 0
\(633\) 1.48806e10i 0.0926840i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 3.76262e11i − 2.28525i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) − 1.88544e11i − 1.10298i −0.834181 0.551490i \(-0.814059\pi\)
0.834181 0.551490i \(-0.185941\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −5.91231e11 −3.29180
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.06087e11i 0.569376i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 3.56009e11 1.86490 0.932449 0.361302i \(-0.117668\pi\)
0.932449 + 0.361302i \(0.117668\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 3.82913e11 1.91159
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 2.28934e11i 1.11597i 0.829853 + 0.557983i \(0.188424\pi\)
−0.829853 + 0.557983i \(0.811576\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) −7.13647e11 −3.35741
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 4.34061e11i 1.94860i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.55801e11 0.683374 0.341687 0.939814i \(-0.389002\pi\)
0.341687 + 0.939814i \(0.389002\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 1.30174e11i 0.532968i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.87686e11 1.92999 0.964995 0.262268i \(-0.0844703\pi\)
0.964995 + 0.262268i \(0.0844703\pi\)
\(710\) 0 0
\(711\) −1.23918e11 −0.484904
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 1.79307e11 0.663524
\(722\) 0 0
\(723\) 4.50828e11i 1.64990i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.21500e11i 0.434951i 0.976066 + 0.217475i \(0.0697822\pi\)
−0.976066 + 0.217475i \(0.930218\pi\)
\(728\) 0 0
\(729\) −2.82430e11 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5.77330e11i 1.99990i 0.0100913 + 0.999949i \(0.496788\pi\)
−0.0100913 + 0.999949i \(0.503212\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 4.35662e11 1.46074 0.730368 0.683054i \(-0.239349\pi\)
0.730368 + 0.683054i \(0.239349\pi\)
\(740\) 0 0
\(741\) 7.49799e11 2.48698
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −5.35831e11 −1.68449 −0.842244 0.539097i \(-0.818766\pi\)
−0.842244 + 0.539097i \(0.818766\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 4.59764e11i − 1.40008i −0.714106 0.700038i \(-0.753167\pi\)
0.714106 0.700038i \(-0.246833\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) − 8.19631e11i − 2.41836i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −6.70500e11 −1.91732 −0.958658 0.284562i \(-0.908152\pi\)
−0.958658 + 0.284562i \(0.908152\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.64528e11i 0.451393i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 6.75420e11i 1.76066i 0.474364 + 0.880329i \(0.342678\pi\)
−0.474364 + 0.880329i \(0.657322\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) − 8.53133e11i − 2.15737i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 8.88545e10 0.205398 0.102699 0.994712i \(-0.467252\pi\)
0.102699 + 0.994712i \(0.467252\pi\)
\(812\) 0 0
\(813\) 2.41954e11i 0.553824i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 9.02823e11i − 2.02635i
\(818\) 0 0
\(819\) 9.47680e11 2.10633
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 8.62186e11i 1.87932i 0.342105 + 0.939662i \(0.388860\pi\)
−0.342105 + 0.939662i \(0.611140\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −4.11968e11 −0.872258 −0.436129 0.899884i \(-0.643651\pi\)
−0.436129 + 0.899884i \(0.643651\pi\)
\(830\) 0 0
\(831\) 6.01674e11 1.26170
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 9.61593e11i − 1.95925i
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 5.00246e11 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8.64724e11i 1.68013i
\(848\) 0 0
\(849\) 8.39948e11 1.61667
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 6.14949e11i − 1.16156i −0.814059 0.580782i \(-0.802747\pi\)
0.814059 0.580782i \(-0.197253\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 8.02752e11 1.47438 0.737189 0.675686i \(-0.236153\pi\)
0.737189 + 0.675686i \(0.236153\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 5.65036e11i 1.00000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 1.94119e11 0.337284
\(872\) 0 0
\(873\) − 1.16069e12i − 1.99830i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.10825e11i 0.356389i 0.983995 + 0.178194i \(0.0570256\pi\)
−0.983995 + 0.178194i \(0.942974\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) − 5.72878e11i − 0.942366i −0.882035 0.471183i \(-0.843827\pi\)
0.882035 0.471183i \(-0.156173\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 1.61587e12 2.58701
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) − 1.14109e12i − 1.71620i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.20490e12i 1.78042i 0.455547 + 0.890212i \(0.349444\pi\)
−0.455547 + 0.890212i \(0.650556\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.44534e11 0.763419 0.381709 0.924282i \(-0.375336\pi\)
0.381709 + 0.924282i \(0.375336\pi\)
\(920\) 0 0
\(921\) −1.14417e12 −1.59020
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.91630e11i 0.394923i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −2.71668e12 −3.61610
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 1.43879e12i − 1.86655i −0.359168 0.933273i \(-0.616939\pi\)
0.359168 0.933273i \(-0.383061\pi\)
\(938\) 0 0
\(939\) −9.47753e11 −1.21908
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 5.78957e11 0.713808
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.42106e12 2.83865
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1.51552e12i − 1.73322i −0.498984 0.866611i \(-0.666293\pi\)
0.498984 0.866611i \(-0.333707\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) − 2.86184e12i − 3.19297i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.33307e12 1.43938
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.92066e12 1.99139 0.995693 0.0927105i \(-0.0295531\pi\)
0.995693 + 0.0927105i \(0.0295531\pi\)
\(992\) 0 0
\(993\) 1.31621e12i 1.35372i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.81390e11i 0.588420i 0.955741 + 0.294210i \(0.0950565\pi\)
−0.955741 + 0.294210i \(0.904944\pi\)
\(998\) 0 0
\(999\) −2.67592e11 −0.268665
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 300.9.b.b.149.1 2
3.2 odd 2 CM 300.9.b.b.149.1 2
5.2 odd 4 300.9.g.a.101.1 1
5.3 odd 4 12.9.c.a.5.1 1
5.4 even 2 inner 300.9.b.b.149.2 2
15.2 even 4 300.9.g.a.101.1 1
15.8 even 4 12.9.c.a.5.1 1
15.14 odd 2 inner 300.9.b.b.149.2 2
20.3 even 4 48.9.e.a.17.1 1
40.3 even 4 192.9.e.b.65.1 1
40.13 odd 4 192.9.e.a.65.1 1
45.13 odd 12 324.9.g.a.269.1 2
45.23 even 12 324.9.g.a.269.1 2
45.38 even 12 324.9.g.a.53.1 2
45.43 odd 12 324.9.g.a.53.1 2
60.23 odd 4 48.9.e.a.17.1 1
120.53 even 4 192.9.e.a.65.1 1
120.83 odd 4 192.9.e.b.65.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
12.9.c.a.5.1 1 5.3 odd 4
12.9.c.a.5.1 1 15.8 even 4
48.9.e.a.17.1 1 20.3 even 4
48.9.e.a.17.1 1 60.23 odd 4
192.9.e.a.65.1 1 40.13 odd 4
192.9.e.a.65.1 1 120.53 even 4
192.9.e.b.65.1 1 40.3 even 4
192.9.e.b.65.1 1 120.83 odd 4
300.9.b.b.149.1 2 1.1 even 1 trivial
300.9.b.b.149.1 2 3.2 odd 2 CM
300.9.b.b.149.2 2 5.4 even 2 inner
300.9.b.b.149.2 2 15.14 odd 2 inner
300.9.g.a.101.1 1 5.2 odd 4
300.9.g.a.101.1 1 15.2 even 4
324.9.g.a.53.1 2 45.38 even 12
324.9.g.a.53.1 2 45.43 odd 12
324.9.g.a.269.1 2 45.13 odd 12
324.9.g.a.269.1 2 45.23 even 12