Properties

Label 3000.2
Level 3000
Weight 2
Dimension 92800
Nonzero newspaces 27
Sturm bound 960000
Trace bound 16

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3000 = 2^{3} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 27 \)
Sturm bound: \(960000\)
Trace bound: \(16\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3000))\).

Total New Old
Modular forms 244320 93824 150496
Cusp forms 235681 92800 142881
Eisenstein series 8639 1024 7615

Trace form

\( 92800 q - 64 q^{3} - 128 q^{4} - 116 q^{6} - 120 q^{7} - 126 q^{9} - 160 q^{10} + 8 q^{11} - 76 q^{12} + 4 q^{13} - 24 q^{14} - 80 q^{15} - 264 q^{16} - 4 q^{17} - 92 q^{18} - 160 q^{19} - 16 q^{21} - 168 q^{22}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3000))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3000.2.a \(\chi_{3000}(1, \cdot)\) 3000.2.a.a 2 1
3000.2.a.b 2
3000.2.a.c 2
3000.2.a.d 2
3000.2.a.e 2
3000.2.a.f 2
3000.2.a.g 2
3000.2.a.h 2
3000.2.a.i 4
3000.2.a.j 4
3000.2.a.k 4
3000.2.a.l 4
3000.2.a.m 4
3000.2.a.n 4
3000.2.a.o 4
3000.2.a.p 4
3000.2.b \(\chi_{3000}(251, \cdot)\) n/a 384 1
3000.2.d \(\chi_{3000}(2749, \cdot)\) n/a 192 1
3000.2.f \(\chi_{3000}(1249, \cdot)\) 3000.2.f.a 4 1
3000.2.f.b 4
3000.2.f.c 4
3000.2.f.d 4
3000.2.f.e 8
3000.2.f.f 8
3000.2.f.g 8
3000.2.f.h 8
3000.2.h \(\chi_{3000}(1751, \cdot)\) None 0 1
3000.2.k \(\chi_{3000}(1501, \cdot)\) n/a 192 1
3000.2.m \(\chi_{3000}(1499, \cdot)\) n/a 384 1
3000.2.o \(\chi_{3000}(2999, \cdot)\) None 0 1
3000.2.r \(\chi_{3000}(1193, \cdot)\) n/a 192 2
3000.2.s \(\chi_{3000}(943, \cdot)\) None 0 2
3000.2.v \(\chi_{3000}(307, \cdot)\) n/a 384 2
3000.2.w \(\chi_{3000}(557, \cdot)\) n/a 768 2
3000.2.y \(\chi_{3000}(601, \cdot)\) n/a 176 4
3000.2.ba \(\chi_{3000}(551, \cdot)\) None 0 4
3000.2.bc \(\chi_{3000}(49, \cdot)\) n/a 184 4
3000.2.be \(\chi_{3000}(349, \cdot)\) n/a 720 4
3000.2.bg \(\chi_{3000}(851, \cdot)\) n/a 1392 4
3000.2.bi \(\chi_{3000}(599, \cdot)\) None 0 4
3000.2.bk \(\chi_{3000}(299, \cdot)\) n/a 1392 4
3000.2.bm \(\chi_{3000}(301, \cdot)\) n/a 720 4
3000.2.bp \(\chi_{3000}(293, \cdot)\) n/a 2784 8
3000.2.bq \(\chi_{3000}(43, \cdot)\) n/a 1440 8
3000.2.bt \(\chi_{3000}(7, \cdot)\) None 0 8
3000.2.bu \(\chi_{3000}(257, \cdot)\) n/a 720 8
3000.2.bw \(\chi_{3000}(121, \cdot)\) n/a 1520 20
3000.2.bz \(\chi_{3000}(119, \cdot)\) None 0 20
3000.2.cb \(\chi_{3000}(59, \cdot)\) n/a 11920 20
3000.2.cc \(\chi_{3000}(61, \cdot)\) n/a 6000 20
3000.2.cf \(\chi_{3000}(11, \cdot)\) n/a 11920 20
3000.2.cg \(\chi_{3000}(109, \cdot)\) n/a 6000 20
3000.2.ci \(\chi_{3000}(169, \cdot)\) n/a 1480 20
3000.2.cl \(\chi_{3000}(71, \cdot)\) None 0 20
3000.2.cn \(\chi_{3000}(53, \cdot)\) n/a 23840 40
3000.2.co \(\chi_{3000}(103, \cdot)\) None 0 40
3000.2.cq \(\chi_{3000}(17, \cdot)\) n/a 6000 40
3000.2.ct \(\chi_{3000}(67, \cdot)\) n/a 12000 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3000))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3000)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(125))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(250))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(375))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(500))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(600))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(750))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1000))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1500))\)\(^{\oplus 2}\)