Properties

Label 3024.1.dc
Level $3024$
Weight $1$
Character orbit 3024.dc
Rep. character $\chi_{3024}(2321,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $3$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3024.dc (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(576\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3024, [\chi])\).

Total New Old
Modular forms 152 8 144
Cusp forms 80 8 72
Eisenstein series 72 0 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 4 0

Trace form

\( 8 q + q^{7} + 2 q^{13} + 3 q^{19} - q^{37} + 8 q^{43} - q^{49} + q^{67} - 3 q^{73} - 3 q^{79} + 8 q^{85} + 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3024.1.dc.a 3024.dc 21.h $2$ $1.509$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 189.1.q.a \(0\) \(0\) \(0\) \(-2\) \(q-q^{7}-q^{13}-\zeta_{6}^{2}q^{19}-\zeta_{6}q^{25}+\cdots\)
3024.1.dc.b 3024.dc 21.h $2$ $1.509$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 756.1.bk.a \(0\) \(0\) \(0\) \(1\) \(q+\zeta_{6}q^{7}+q^{13}+\zeta_{6}^{2}q^{19}-\zeta_{6}q^{25}+\cdots\)
3024.1.dc.c 3024.dc 21.h $4$ $1.509$ \(\Q(\sqrt{-2}, \sqrt{-3})\) $S_{4}$ None None 1512.1.cu.a \(0\) \(0\) \(0\) \(2\) \(q+\beta _{1}q^{5}+\beta _{2}q^{7}+(\beta _{1}-\beta _{3})q^{17}+(1+\cdots)q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3024, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1512, [\chi])\)\(^{\oplus 2}\)