Defining parameters
Level: | \( N \) | \(=\) | \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3024.dc (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3024, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 8 | 144 |
Cusp forms | 80 | 8 | 72 |
Eisenstein series | 72 | 0 | 72 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 4 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3024.1.dc.a | $2$ | $1.509$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-q^{7}-q^{13}-\zeta_{6}^{2}q^{19}-\zeta_{6}q^{25}+\cdots\) |
3024.1.dc.b | $2$ | $1.509$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(1\) | \(q+\zeta_{6}q^{7}+q^{13}+\zeta_{6}^{2}q^{19}-\zeta_{6}q^{25}+\cdots\) |
3024.1.dc.c | $4$ | $1.509$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q+\beta _{1}q^{5}+\beta _{2}q^{7}+(\beta _{1}-\beta _{3})q^{17}+(1+\cdots)q^{19}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3024, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1512, [\chi])\)\(^{\oplus 2}\)