Defining parameters
Level: | \( N \) | \(=\) | \( 3025 = 5^{2} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3025.bq (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 275 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(330\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3025, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 72 | 32 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 96 | 64 | 32 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3025, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3025.1.bq.a | $8$ | $1.510$ | \(\Q(\zeta_{20})\) | $D_{20}$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+(-\zeta_{20}^{2}-\zeta_{20}^{5})q^{3}+\zeta_{20}^{3}q^{4}+\cdots\) |