Properties

Label 3040.1.cn.a.1709.4
Level $3040$
Weight $1$
Character 3040.1709
Analytic conductor $1.517$
Analytic rank $0$
Dimension $32$
Projective image $D_{32}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,1,Mod(189,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.189");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3040.cn (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.51715763840\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{64})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{32}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{32} + \cdots)\)

Embedding invariants

Embedding label 1709.4
Root \(-0.956940 - 0.290285i\) of defining polynomial
Character \(\chi\) \(=\) 3040.1709
Dual form 3040.1.cn.a.2469.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0980171 + 0.995185i) q^{2} +(-0.485544 + 1.17221i) q^{3} +(-0.980785 - 0.195090i) q^{4} +(0.923880 - 0.382683i) q^{5} +(-1.11897 - 0.598102i) q^{6} +(0.290285 - 0.956940i) q^{8} +(-0.431207 - 0.431207i) q^{9} +(0.290285 + 0.956940i) q^{10} +(-0.636379 - 1.53636i) q^{11} +(0.704900 - 1.05496i) q^{12} +(-1.62958 - 0.674993i) q^{13} +1.26879i q^{15} +(0.923880 + 0.382683i) q^{16} +(0.471397 - 0.386865i) q^{18} +(-0.923880 - 0.382683i) q^{19} +(-0.980785 + 0.195090i) q^{20} +(1.59133 - 0.482726i) q^{22} +(0.980785 + 0.804910i) q^{24} +(0.707107 - 0.707107i) q^{25} +(0.831470 - 1.55557i) q^{26} +(-0.457372 + 0.189450i) q^{27} +(-1.26268 - 0.124363i) q^{30} +(-0.471397 + 0.881921i) q^{32} +2.10991 q^{33} +(0.338797 + 0.507046i) q^{36} +(1.83886 - 0.761681i) q^{37} +(0.471397 - 0.881921i) q^{38} +(1.58246 - 1.58246i) q^{39} +(-0.0980171 - 0.995185i) q^{40} +(0.324423 + 1.63099i) q^{44} +(-0.563400 - 0.233368i) q^{45} +(-0.897168 + 0.897168i) q^{48} -1.00000i q^{49} +(0.634393 + 0.773010i) q^{50} +(1.46658 + 0.979938i) q^{52} +(-0.591637 - 1.42834i) q^{53} +(-0.143707 - 0.473739i) q^{54} +(-1.17588 - 1.17588i) q^{55} +(0.897168 - 0.897168i) q^{57} +(0.247528 - 1.24441i) q^{60} +(-0.425215 + 1.02656i) q^{61} +(-0.831470 - 0.555570i) q^{64} -1.76384 q^{65} +(-0.206808 + 2.09976i) q^{66} +(0.732410 - 1.76820i) q^{67} +(-0.537813 + 0.287467i) q^{72} +(0.577774 + 1.90466i) q^{74} +(0.485544 + 1.17221i) q^{75} +(0.831470 + 0.555570i) q^{76} +(1.41973 + 1.72995i) q^{78} +1.00000 q^{80} -1.23794i q^{81} +(-1.65493 + 0.162997i) q^{88} +(0.287467 - 0.537813i) q^{90} -1.00000 q^{95} +(-0.804910 - 0.980785i) q^{96} +0.942793 q^{97} +(0.995185 + 0.0980171i) q^{98} +(-0.388076 + 0.936899i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{66} + 32 q^{80} - 32 q^{95} - 32 q^{96} - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1217\) \(1921\) \(2661\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0980171 + 0.995185i −0.0980171 + 0.995185i
\(3\) −0.485544 + 1.17221i −0.485544 + 1.17221i 0.471397 + 0.881921i \(0.343750\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(4\) −0.980785 0.195090i −0.980785 0.195090i
\(5\) 0.923880 0.382683i 0.923880 0.382683i
\(6\) −1.11897 0.598102i −1.11897 0.598102i
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0.290285 0.956940i 0.290285 0.956940i
\(9\) −0.431207 0.431207i −0.431207 0.431207i
\(10\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(11\) −0.636379 1.53636i −0.636379 1.53636i −0.831470 0.555570i \(-0.812500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(12\) 0.704900 1.05496i 0.704900 1.05496i
\(13\) −1.62958 0.674993i −1.62958 0.674993i −0.634393 0.773010i \(-0.718750\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(14\) 0 0
\(15\) 1.26879i 1.26879i
\(16\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0.471397 0.386865i 0.471397 0.386865i
\(19\) −0.923880 0.382683i −0.923880 0.382683i
\(20\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(21\) 0 0
\(22\) 1.59133 0.482726i 1.59133 0.482726i
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0.980785 + 0.804910i 0.980785 + 0.804910i
\(25\) 0.707107 0.707107i 0.707107 0.707107i
\(26\) 0.831470 1.55557i 0.831470 1.55557i
\(27\) −0.457372 + 0.189450i −0.457372 + 0.189450i
\(28\) 0 0
\(29\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(30\) −1.26268 0.124363i −1.26268 0.124363i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(33\) 2.10991 2.10991
\(34\) 0 0
\(35\) 0 0
\(36\) 0.338797 + 0.507046i 0.338797 + 0.507046i
\(37\) 1.83886 0.761681i 1.83886 0.761681i 0.881921 0.471397i \(-0.156250\pi\)
0.956940 0.290285i \(-0.0937500\pi\)
\(38\) 0.471397 0.881921i 0.471397 0.881921i
\(39\) 1.58246 1.58246i 1.58246 1.58246i
\(40\) −0.0980171 0.995185i −0.0980171 0.995185i
\(41\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(42\) 0 0
\(43\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(44\) 0.324423 + 1.63099i 0.324423 + 1.63099i
\(45\) −0.563400 0.233368i −0.563400 0.233368i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −0.897168 + 0.897168i −0.897168 + 0.897168i
\(49\) 1.00000i 1.00000i
\(50\) 0.634393 + 0.773010i 0.634393 + 0.773010i
\(51\) 0 0
\(52\) 1.46658 + 0.979938i 1.46658 + 0.979938i
\(53\) −0.591637 1.42834i −0.591637 1.42834i −0.881921 0.471397i \(-0.843750\pi\)
0.290285 0.956940i \(-0.406250\pi\)
\(54\) −0.143707 0.473739i −0.143707 0.473739i
\(55\) −1.17588 1.17588i −1.17588 1.17588i
\(56\) 0 0
\(57\) 0.897168 0.897168i 0.897168 0.897168i
\(58\) 0 0
\(59\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(60\) 0.247528 1.24441i 0.247528 1.24441i
\(61\) −0.425215 + 1.02656i −0.425215 + 1.02656i 0.555570 + 0.831470i \(0.312500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.831470 0.555570i −0.831470 0.555570i
\(65\) −1.76384 −1.76384
\(66\) −0.206808 + 2.09976i −0.206808 + 2.09976i
\(67\) 0.732410 1.76820i 0.732410 1.76820i 0.0980171 0.995185i \(-0.468750\pi\)
0.634393 0.773010i \(-0.281250\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(72\) −0.537813 + 0.287467i −0.537813 + 0.287467i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0.577774 + 1.90466i 0.577774 + 1.90466i
\(75\) 0.485544 + 1.17221i 0.485544 + 1.17221i
\(76\) 0.831470 + 0.555570i 0.831470 + 0.555570i
\(77\) 0 0
\(78\) 1.41973 + 1.72995i 1.41973 + 1.72995i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000 1.00000
\(81\) 1.23794i 1.23794i
\(82\) 0 0
\(83\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) −1.65493 + 0.162997i −1.65493 + 0.162997i
\(89\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(90\) 0.287467 0.537813i 0.287467 0.537813i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −1.00000
\(96\) −0.804910 0.980785i −0.804910 0.980785i
\(97\) 0.942793 0.942793 0.471397 0.881921i \(-0.343750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(98\) 0.995185 + 0.0980171i 0.995185 + 0.0980171i
\(99\) −0.388076 + 0.936899i −0.388076 + 0.936899i
\(100\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(101\) 1.53636 0.636379i 1.53636 0.636379i 0.555570 0.831470i \(-0.312500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(102\) 0 0
\(103\) −0.138617 + 0.138617i −0.138617 + 0.138617i −0.773010 0.634393i \(-0.781250\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(104\) −1.11897 + 1.36347i −1.11897 + 1.36347i
\(105\) 0 0
\(106\) 1.47945 0.448786i 1.47945 0.448786i
\(107\) −0.222174 0.536376i −0.222174 0.536376i 0.773010 0.634393i \(-0.218750\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(108\) 0.485544 0.0965806i 0.485544 0.0965806i
\(109\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(110\) 1.28547 1.05496i 1.28547 1.05496i
\(111\) 2.52535i 2.52535i
\(112\) 0 0
\(113\) 1.54602i 1.54602i 0.634393 + 0.773010i \(0.281250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(114\) 0.804910 + 0.980785i 0.804910 + 0.980785i
\(115\) 0 0
\(116\) 0 0
\(117\) 0.411624 + 0.993748i 0.411624 + 0.993748i
\(118\) 0 0
\(119\) 0 0
\(120\) 1.21415 + 0.368309i 1.21415 + 0.368309i
\(121\) −1.24830 + 1.24830i −1.24830 + 1.24830i
\(122\) −0.979938 0.523788i −0.979938 0.523788i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.382683 0.923880i 0.382683 0.923880i
\(126\) 0 0
\(127\) −1.91388 −1.91388 −0.956940 0.290285i \(-0.906250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(128\) 0.634393 0.773010i 0.634393 0.773010i
\(129\) 0 0
\(130\) 0.172887 1.75535i 0.172887 1.75535i
\(131\) −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i \(0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(132\) −2.06937 0.411624i −2.06937 0.411624i
\(133\) 0 0
\(134\) 1.68789 + 0.902197i 1.68789 + 0.902197i
\(135\) −0.350057 + 0.350057i −0.350057 + 0.350057i
\(136\) 0 0
\(137\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) 0.750661 + 1.81225i 0.750661 + 1.81225i 0.555570 + 0.831470i \(0.312500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.93316i 2.93316i
\(144\) −0.233368 0.563400i −0.233368 0.563400i
\(145\) 0 0
\(146\) 0 0
\(147\) 1.17221 + 0.485544i 1.17221 + 0.485544i
\(148\) −1.95213 + 0.388302i −1.95213 + 0.388302i
\(149\) −0.750661 1.81225i −0.750661 1.81225i −0.555570 0.831470i \(-0.687500\pi\)
−0.195090 0.980785i \(-0.562500\pi\)
\(150\) −1.21415 + 0.368309i −1.21415 + 0.368309i
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.86078 + 1.24333i −1.86078 + 1.24333i
\(157\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(158\) 0 0
\(159\) 1.96157 1.96157
\(160\) −0.0980171 + 0.995185i −0.0980171 + 0.995185i
\(161\) 0 0
\(162\) 1.23198 + 0.121339i 1.23198 + 0.121339i
\(163\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(164\) 0 0
\(165\) 1.94931 0.807429i 1.94931 0.807429i
\(166\) 0 0
\(167\) 0.410525 0.410525i 0.410525 0.410525i −0.471397 0.881921i \(-0.656250\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(168\) 0 0
\(169\) 1.49280 + 1.49280i 1.49280 + 1.49280i
\(170\) 0 0
\(171\) 0.233368 + 0.563400i 0.233368 + 0.563400i
\(172\) 0 0
\(173\) −1.76820 0.732410i −1.76820 0.732410i −0.995185 0.0980171i \(-0.968750\pi\)
−0.773010 0.634393i \(-0.781250\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.66294i 1.66294i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(180\) 0.507046 + 0.338797i 0.507046 + 0.338797i
\(181\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(182\) 0 0
\(183\) −0.996879 0.996879i −0.996879 0.996879i
\(184\) 0 0
\(185\) 1.40740 1.40740i 1.40740 1.40740i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0.0980171 0.995185i 0.0980171 0.995185i
\(191\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(192\) 1.05496 0.704900i 1.05496 0.704900i
\(193\) −0.580569 −0.580569 −0.290285 0.956940i \(-0.593750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(194\) −0.0924099 + 0.938254i −0.0924099 + 0.938254i
\(195\) 0.856422 2.06759i 0.856422 2.06759i
\(196\) −0.195090 + 0.980785i −0.195090 + 0.980785i
\(197\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(198\) −0.894350 0.478040i −0.894350 0.478040i
\(199\) −0.541196 + 0.541196i −0.541196 + 0.541196i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(200\) −0.471397 0.881921i −0.471397 0.881921i
\(201\) 1.71707 + 1.71707i 1.71707 + 1.71707i
\(202\) 0.482726 + 1.59133i 0.482726 + 1.59133i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −0.124363 0.151537i −0.124363 0.151537i
\(207\) 0 0
\(208\) −1.24723 1.24723i −1.24723 1.24723i
\(209\) 1.66294i 1.66294i
\(210\) 0 0
\(211\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(212\) 0.301614 + 1.51631i 0.301614 + 1.51631i
\(213\) 0 0
\(214\) 0.555570 0.168530i 0.555570 0.168530i
\(215\) 0 0
\(216\) 0.0485240 + 0.492672i 0.0485240 + 0.492672i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0.923880 + 1.38268i 0.923880 + 1.38268i
\(221\) 0 0
\(222\) −2.51319 0.247528i −2.51319 0.247528i
\(223\) −0.942793 −0.942793 −0.471397 0.881921i \(-0.656250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(224\) 0 0
\(225\) −0.609819 −0.609819
\(226\) −1.53858 0.151537i −1.53858 0.151537i
\(227\) 0.360791 0.871028i 0.360791 0.871028i −0.634393 0.773010i \(-0.718750\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(228\) −1.05496 + 0.704900i −1.05496 + 0.704900i
\(229\) −1.81225 + 0.750661i −1.81225 + 0.750661i −0.831470 + 0.555570i \(0.812500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) −1.02931 + 0.312238i −1.02931 + 0.312238i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(240\) −0.485544 + 1.17221i −0.485544 + 1.17221i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −1.11994 1.36465i −1.11994 1.36465i
\(243\) 0.993748 + 0.411624i 0.993748 + 0.411624i
\(244\) 0.617317 0.923880i 0.617317 0.923880i
\(245\) −0.382683 0.923880i −0.382683 0.923880i
\(246\) 0 0
\(247\) 1.24723 + 1.24723i 1.24723 + 1.24723i
\(248\) 0 0
\(249\) 0 0
\(250\) 0.881921 + 0.471397i 0.881921 + 0.471397i
\(251\) 1.30656 0.541196i 1.30656 0.541196i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.187593 1.90466i 0.187593 1.90466i
\(255\) 0 0
\(256\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(257\) 0.580569 0.580569 0.290285 0.956940i \(-0.406250\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.72995 + 0.344109i 1.72995 + 0.344109i
\(261\) 0 0
\(262\) −1.62958 0.871028i −1.62958 0.871028i
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0.612476 2.01906i 0.612476 2.01906i
\(265\) −1.09320 1.09320i −1.09320 1.09320i
\(266\) 0 0
\(267\) 0 0
\(268\) −1.06330 + 1.59133i −1.06330 + 1.59133i
\(269\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(270\) −0.314060 0.382683i −0.314060 0.382683i
\(271\) 1.96157i 1.96157i −0.195090 0.980785i \(-0.562500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.53636 0.636379i −1.53636 0.636379i
\(276\) 0 0
\(277\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(278\) −1.87711 + 0.569414i −1.87711 + 0.569414i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(282\) 0 0
\(283\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(284\) 0 0
\(285\) 0.485544 1.17221i 0.485544 1.17221i
\(286\) −2.91904 0.287500i −2.91904 0.287500i
\(287\) 0 0
\(288\) 0.583561 0.177021i 0.583561 0.177021i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) −0.457767 + 1.10515i −0.457767 + 1.10515i
\(292\) 0 0
\(293\) −0.181112 + 0.0750191i −0.181112 + 0.0750191i −0.471397 0.881921i \(-0.656250\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(294\) −0.598102 + 1.11897i −0.598102 + 1.11897i
\(295\) 0 0
\(296\) −0.195090 1.98079i −0.195090 1.98079i
\(297\) 0.582124 + 0.582124i 0.582124 + 0.582124i
\(298\) 1.87711 0.569414i 1.87711 0.569414i
\(299\) 0 0
\(300\) −0.247528 1.24441i −0.247528 1.24441i
\(301\) 0 0
\(302\) 0 0
\(303\) 2.10991i 2.10991i
\(304\) −0.707107 0.707107i −0.707107 0.707107i
\(305\) 1.11114i 1.11114i
\(306\) 0 0
\(307\) 0.871028 + 0.360791i 0.871028 + 0.360791i 0.773010 0.634393i \(-0.218750\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(308\) 0 0
\(309\) −0.0951832 0.229793i −0.0951832 0.229793i
\(310\) 0 0
\(311\) 0.785695 + 0.785695i 0.785695 + 0.785695i 0.980785 0.195090i \(-0.0625000\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(312\) −1.05496 1.97369i −1.05496 1.97369i
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.222174 0.536376i 0.222174 0.536376i −0.773010 0.634393i \(-0.781250\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(318\) −0.192268 + 1.95213i −0.192268 + 1.95213i
\(319\) 0 0
\(320\) −0.980785 0.195090i −0.980785 0.195090i
\(321\) 0.736619 0.736619
\(322\) 0 0
\(323\) 0 0
\(324\) −0.241510 + 1.21415i −0.241510 + 1.21415i
\(325\) −1.62958 + 0.674993i −1.62958 + 0.674993i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0.612476 + 2.01906i 0.612476 + 2.01906i
\(331\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(332\) 0 0
\(333\) −1.12137 0.464488i −1.12137 0.464488i
\(334\) 0.368309 + 0.448786i 0.368309 + 0.448786i
\(335\) 1.91388i 1.91388i
\(336\) 0 0
\(337\) 1.99037i 1.99037i 0.0980171 + 0.995185i \(0.468750\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(338\) −1.63193 + 1.33929i −1.63193 + 1.33929i
\(339\) −1.81225 0.750661i −1.81225 0.750661i
\(340\) 0 0
\(341\) 0 0
\(342\) −0.583561 + 0.177021i −0.583561 + 0.177021i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0.902197 1.68789i 0.902197 1.68789i
\(347\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(348\) 0 0
\(349\) −0.541196 + 1.30656i −0.541196 + 1.30656i 0.382683 + 0.923880i \(0.375000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(350\) 0 0
\(351\) 0.873201 0.873201
\(352\) 1.65493 + 0.162997i 1.65493 + 0.162997i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.38704 1.38704i 1.38704 1.38704i 0.555570 0.831470i \(-0.312500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(360\) −0.386865 + 0.471397i −0.386865 + 0.471397i
\(361\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(362\) 0 0
\(363\) −0.857163 2.06937i −0.857163 2.06937i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.08979 0.894368i 1.08979 0.894368i
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 1.26268 + 1.53858i 1.26268 + 1.53858i
\(371\) 0 0
\(372\) 0 0
\(373\) 0.485544 + 1.17221i 0.485544 + 1.17221i 0.956940 + 0.290285i \(0.0937500\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(374\) 0 0
\(375\) 0.897168 + 0.897168i 0.897168 + 0.897168i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(380\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(381\) 0.929273 2.24346i 0.929273 2.24346i
\(382\) 0.0750191 0.761681i 0.0750191 0.761681i
\(383\) 0.196034 0.196034 0.0980171 0.995185i \(-0.468750\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(384\) 0.598102 + 1.11897i 0.598102 + 1.11897i
\(385\) 0 0
\(386\) 0.0569057 0.577774i 0.0569057 0.577774i
\(387\) 0 0
\(388\) −0.924678 0.183930i −0.924678 0.183930i
\(389\) 1.70711 0.707107i 1.70711 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
1.00000 \(0\)
\(390\) 1.97369 + 1.05496i 1.97369 + 1.05496i
\(391\) 0 0
\(392\) −0.956940 0.290285i −0.956940 0.290285i
\(393\) −1.65775 1.65775i −1.65775 1.65775i
\(394\) 0 0
\(395\) 0 0
\(396\) 0.563400 0.843187i 0.563400 0.843187i
\(397\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(398\) −0.485544 0.591637i −0.485544 0.591637i
\(399\) 0 0
\(400\) 0.923880 0.382683i 0.923880 0.382683i
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) −1.87711 + 1.54050i −1.87711 + 1.54050i
\(403\) 0 0
\(404\) −1.63099 + 0.324423i −1.63099 + 0.324423i
\(405\) −0.473739 1.14371i −0.473739 1.14371i
\(406\) 0 0
\(407\) −2.34043 2.34043i −2.34043 2.34043i
\(408\) 0 0
\(409\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.162997 0.108911i 0.162997 0.108911i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 1.36347 1.11897i 1.36347 1.11897i
\(417\) −2.48881 −2.48881
\(418\) −1.65493 0.162997i −1.65493 0.162997i
\(419\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(420\) 0 0
\(421\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.53858 + 0.151537i −1.53858 + 0.151537i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.113263 + 0.569414i 0.113263 + 0.569414i
\(429\) −3.43827 1.42418i −3.43827 1.42418i
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −0.495056 −0.495056
\(433\) 1.26879i 1.26879i −0.773010 0.634393i \(-0.781250\pi\)
0.773010 0.634393i \(-0.218750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(440\) −1.46658 + 0.783904i −1.46658 + 0.783904i
\(441\) −0.431207 + 0.431207i −0.431207 + 0.431207i
\(442\) 0 0
\(443\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(444\) 0.492672 2.47683i 0.492672 2.47683i
\(445\) 0 0
\(446\) 0.0924099 0.938254i 0.0924099 0.938254i
\(447\) 2.48881 2.48881
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0.0597727 0.606883i 0.0597727 0.606883i
\(451\) 0 0
\(452\) 0.301614 1.51631i 0.301614 1.51631i
\(453\) 0 0
\(454\) 0.831470 + 0.444430i 0.831470 + 0.444430i
\(455\) 0 0
\(456\) −0.598102 1.11897i −0.598102 1.11897i
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) −0.569414 1.87711i −0.569414 1.87711i
\(459\) 0 0
\(460\) 0 0
\(461\) −0.707107 0.292893i −0.707107 0.292893i 1.00000i \(-0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(468\) −0.209844 1.05496i −0.209844 1.05496i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(476\) 0 0
\(477\) −0.360791 + 0.871028i −0.360791 + 0.871028i
\(478\) 1.40740 + 0.138617i 1.40740 + 0.138617i
\(479\) 1.66294 1.66294 0.831470 0.555570i \(-0.187500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(480\) −1.11897 0.598102i −1.11897 0.598102i
\(481\) −3.51070 −3.51070
\(482\) 0 0
\(483\) 0 0
\(484\) 1.46785 0.980785i 1.46785 0.980785i
\(485\) 0.871028 0.360791i 0.871028 0.360791i
\(486\) −0.507046 + 0.948617i −0.507046 + 0.948617i
\(487\) 1.09320 1.09320i 1.09320 1.09320i 0.0980171 0.995185i \(-0.468750\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(488\) 0.858923 + 0.704900i 0.858923 + 0.704900i
\(489\) 0 0
\(490\) 0.956940 0.290285i 0.956940 0.290285i
\(491\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −1.36347 + 1.11897i −1.36347 + 1.11897i
\(495\) 1.01409i 1.01409i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.360480 + 0.149316i 0.360480 + 0.149316i 0.555570 0.831470i \(-0.312500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(500\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(501\) 0.281892 + 0.680547i 0.281892 + 0.680547i
\(502\) 0.410525 + 1.35332i 0.410525 + 1.35332i
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 1.17588 1.17588i 1.17588 1.17588i
\(506\) 0 0
\(507\) −2.47469 + 1.02505i −2.47469 + 1.02505i
\(508\) 1.87711 + 0.373380i 1.87711 + 0.373380i
\(509\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.773010 + 0.634393i −0.773010 + 0.634393i
\(513\) 0.495056 0.495056
\(514\) −0.0569057 + 0.577774i −0.0569057 + 0.577774i
\(515\) −0.0750191 + 0.181112i −0.0750191 + 0.181112i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.71707 1.71707i 1.71707 1.71707i
\(520\) −0.512016 + 1.68789i −0.512016 + 1.68789i
\(521\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(522\) 0 0
\(523\) −0.0750191 0.181112i −0.0750191 0.181112i 0.881921 0.471397i \(-0.156250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(524\) 1.02656 1.53636i 1.02656 1.53636i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 1.94931 + 0.807429i 1.94931 + 0.807429i
\(529\) 1.00000i 1.00000i
\(530\) 1.19509 0.980785i 1.19509 0.980785i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.410525 0.410525i −0.410525 0.410525i
\(536\) −1.47945 1.21415i −1.47945 1.21415i
\(537\) 0 0
\(538\) 0 0
\(539\) −1.53636 + 0.636379i −1.53636 + 0.636379i
\(540\) 0.411624 0.275038i 0.411624 0.275038i
\(541\) −0.149316 + 0.360480i −0.149316 + 0.360480i −0.980785 0.195090i \(-0.937500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(542\) 1.95213 + 0.192268i 1.95213 + 0.192268i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.761681 + 1.83886i −0.761681 + 1.83886i −0.290285 + 0.956940i \(0.593750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(548\) 0 0
\(549\) 0.626016 0.259304i 0.626016 0.259304i
\(550\) 0.783904 1.46658i 0.783904 1.46658i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.966411 + 2.33312i 0.966411 + 2.33312i
\(556\) −0.382683 1.92388i −0.382683 1.92388i
\(557\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.83886 + 0.761681i 1.83886 + 0.761681i 0.956940 + 0.290285i \(0.0937500\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(564\) 0 0
\(565\) 0.591637 + 1.42834i 0.591637 + 1.42834i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(570\) 1.11897 + 0.598102i 1.11897 + 0.598102i
\(571\) −0.360480 + 0.149316i −0.360480 + 0.149316i −0.555570 0.831470i \(-0.687500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(572\) 0.572232 2.87680i 0.572232 2.87680i
\(573\) 0.371619 0.897168i 0.371619 0.897168i
\(574\) 0 0
\(575\) 0 0
\(576\) 0.118970 + 0.598102i 0.118970 + 0.598102i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.0980171 0.995185i 0.0980171 0.995185i
\(579\) 0.281892 0.680547i 0.281892 0.680547i
\(580\) 0 0
\(581\) 0 0
\(582\) −1.05496 0.563887i −1.05496 0.563887i
\(583\) −1.81793 + 1.81793i −1.81793 + 1.81793i
\(584\) 0 0
\(585\) 0.760582 + 0.760582i 0.760582 + 0.760582i
\(586\) −0.0569057 0.187593i −0.0569057 0.187593i
\(587\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(588\) −1.05496 0.704900i −1.05496 0.704900i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.99037 1.99037
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −0.636379 + 0.522263i −0.636379 + 0.522263i
\(595\) 0 0
\(596\) 0.382683 + 1.92388i 0.382683 + 1.92388i
\(597\) −0.371619 0.897168i −0.371619 0.897168i
\(598\) 0 0
\(599\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(600\) 1.26268 0.124363i 1.26268 0.124363i
\(601\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(602\) 0 0
\(603\) −1.07828 + 0.446638i −1.07828 + 0.446638i
\(604\) 0 0
\(605\) −0.675577 + 1.63099i −0.675577 + 1.63099i
\(606\) −2.09976 0.206808i −2.09976 0.206808i
\(607\) 1.54602 1.54602 0.773010 0.634393i \(-0.218750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(608\) 0.773010 0.634393i 0.773010 0.634393i
\(609\) 0 0
\(610\) −1.10579 0.108911i −1.10579 0.108911i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(614\) −0.444430 + 0.831470i −0.444430 + 0.831470i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(618\) 0.238016 0.0722012i 0.238016 0.0722012i
\(619\) −0.425215 1.02656i −0.425215 1.02656i −0.980785 0.195090i \(-0.937500\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −0.858923 + 0.704900i −0.858923 + 0.704900i
\(623\) 0 0
\(624\) 2.06759 0.856422i 2.06759 0.856422i
\(625\) 1.00000i 1.00000i
\(626\) 0 0
\(627\) −1.94931 0.807429i −1.94931 0.807429i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.275899 + 0.275899i 0.275899 + 0.275899i 0.831470 0.555570i \(-0.187500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.512016 + 0.273678i 0.512016 + 0.273678i
\(635\) −1.76820 + 0.732410i −1.76820 + 0.732410i
\(636\) −1.92388 0.382683i −1.92388 0.382683i
\(637\) −0.674993 + 1.62958i −0.674993 + 1.62958i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.290285 0.956940i 0.290285 0.956940i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −0.0722012 + 0.733072i −0.0722012 + 0.733072i
\(643\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) −1.18463 0.359355i −1.18463 0.359355i
\(649\) 0 0
\(650\) −0.512016 1.68789i −0.512016 1.68789i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(654\) 0 0
\(655\) 1.84776i 1.84776i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(660\) −2.06937 + 0.411624i −2.06937 + 0.411624i
\(661\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.572165 1.07045i 0.572165 1.07045i
\(667\) 0 0
\(668\) −0.482726 + 0.322547i −0.482726 + 0.322547i
\(669\) 0.457767 1.10515i 0.457767 1.10515i
\(670\) 1.90466 + 0.187593i 1.90466 + 0.187593i
\(671\) 1.84776 1.84776
\(672\) 0 0
\(673\) 1.99037 1.99037 0.995185 0.0980171i \(-0.0312500\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(674\) −1.98079 0.195090i −1.98079 0.195090i
\(675\) −0.189450 + 0.457372i −0.189450 + 0.457372i
\(676\) −1.17289 1.75535i −1.17289 1.75535i
\(677\) −1.83886 + 0.761681i −1.83886 + 0.761681i −0.881921 + 0.471397i \(0.843750\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(678\) 0.924678 1.72995i 0.924678 1.72995i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.845844 + 0.845844i 0.845844 + 0.845844i
\(682\) 0 0
\(683\) −0.761681 1.83886i −0.761681 1.83886i −0.471397 0.881921i \(-0.656250\pi\)
−0.290285 0.956940i \(-0.593750\pi\)
\(684\) −0.118970 0.598102i −0.118970 0.598102i
\(685\) 0 0
\(686\) 0 0
\(687\) 2.48881i 2.48881i
\(688\) 0 0
\(689\) 2.72694i 2.72694i
\(690\) 0 0
\(691\) 1.02656 + 0.425215i 1.02656 + 0.425215i 0.831470 0.555570i \(-0.187500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(692\) 1.59133 + 1.06330i 1.59133 + 1.06330i
\(693\) 0 0
\(694\) 0 0
\(695\) 1.38704 + 1.38704i 1.38704 + 1.38704i
\(696\) 0 0
\(697\) 0 0
\(698\) −1.24723 0.666656i −1.24723 0.666656i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.149316 0.360480i 0.149316 0.360480i −0.831470 0.555570i \(-0.812500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(702\) −0.0855886 + 0.868996i −0.0855886 + 0.868996i
\(703\) −1.99037 −1.99037
\(704\) −0.324423 + 1.63099i −0.324423 + 1.63099i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.30656 + 0.541196i −1.30656 + 0.541196i −0.923880 0.382683i \(-0.875000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 1.12247 + 2.70989i 1.12247 + 2.70989i
\(716\) 0 0
\(717\) 1.65775 + 0.686662i 1.65775 + 0.686662i
\(718\) 1.24441 + 1.51631i 1.24441 + 1.51631i
\(719\) 0.390181i 0.390181i 0.980785 + 0.195090i \(0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(720\) −0.431207 0.431207i −0.431207 0.431207i
\(721\) 0 0
\(722\) −0.773010 + 0.634393i −0.773010 + 0.634393i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 2.14343 0.650201i 2.14343 0.650201i
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) −0.0896606 + 0.0896606i −0.0896606 + 0.0896606i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.783243 + 1.17221i 0.783243 + 1.17221i
\(733\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(734\) 0 0
\(735\) 1.26879 1.26879
\(736\) 0 0
\(737\) −3.18267 −3.18267
\(738\) 0 0
\(739\) −0.541196 + 1.30656i −0.541196 + 1.30656i 0.382683 + 0.923880i \(0.375000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(740\) −1.65493 + 1.10579i −1.65493 + 1.10579i
\(741\) −2.06759 + 0.856422i −2.06759 + 0.856422i
\(742\) 0 0
\(743\) 1.24723 1.24723i 1.24723 1.24723i 0.290285 0.956940i \(-0.406250\pi\)
0.956940 0.290285i \(-0.0937500\pi\)
\(744\) 0 0
\(745\) −1.38704 1.38704i −1.38704 1.38704i
\(746\) −1.21415 + 0.368309i −1.21415 + 0.368309i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −0.980785 + 0.804910i −0.980785 + 0.804910i
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 1.79434i 1.79434i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −0.290285 + 0.956940i −0.290285 + 0.956940i
\(761\) −0.785695 + 0.785695i −0.785695 + 0.785695i −0.980785 0.195090i \(-0.937500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(762\) 2.14157 + 1.14470i 2.14157 + 1.14470i
\(763\) 0 0
\(764\) 0.750661 + 0.149316i 0.750661 + 0.149316i
\(765\) 0 0
\(766\) −0.0192147 + 0.195090i −0.0192147 + 0.195090i
\(767\) 0 0
\(768\) −1.17221 + 0.485544i −1.17221 + 0.485544i
\(769\) 1.96157 1.96157 0.980785 0.195090i \(-0.0625000\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(770\) 0 0
\(771\) −0.281892 + 0.680547i −0.281892 + 0.680547i
\(772\) 0.569414 + 0.113263i 0.569414 + 0.113263i
\(773\) 0.871028 0.360791i 0.871028 0.360791i 0.0980171 0.995185i \(-0.468750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.273678 0.902197i 0.273678 0.902197i
\(777\) 0 0
\(778\) 0.536376 + 1.76820i 0.536376 + 1.76820i
\(779\) 0 0
\(780\) −1.24333 + 1.86078i −1.24333 + 1.86078i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.382683 0.923880i 0.382683 0.923880i
\(785\) 0 0
\(786\) 1.81225 1.48728i 1.81225 1.48728i
\(787\) 0.181112 + 0.0750191i 0.181112 + 0.0750191i 0.471397 0.881921i \(-0.343750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.783904 + 0.643333i 0.783904 + 0.643333i
\(793\) 1.38584 1.38584i 1.38584 1.38584i
\(794\) 0 0
\(795\) 1.81225 0.750661i 1.81225 0.750661i
\(796\) 0.636379 0.425215i 0.636379 0.425215i
\(797\) 0.0750191 0.181112i 0.0750191 0.181112i −0.881921 0.471397i \(-0.843750\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1.34909 2.01906i −1.34909 2.01906i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −0.162997 1.65493i −0.162997 1.65493i
\(809\) 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(810\) 1.18463 0.359355i 1.18463 0.359355i
\(811\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(812\) 0 0
\(813\) 2.29936 + 0.952428i 2.29936 + 0.952428i
\(814\) 2.55856 2.09976i 2.55856 2.09976i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i \(0.250000\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0.0924099 + 0.172887i 0.0924099 + 0.172887i
\(825\) 1.49194 1.49194i 1.49194 1.49194i
\(826\) 0 0
\(827\) 0.181112 0.0750191i 0.181112 0.0750191i −0.290285 0.956940i \(-0.593750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(828\) 0 0
\(829\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.979938 + 1.46658i 0.979938 + 1.46658i
\(833\) 0 0
\(834\) 0.243946 2.47683i 0.243946 2.47683i
\(835\) 0.222174 0.536376i 0.222174 0.536376i
\(836\) 0.324423 1.63099i 0.324423 1.63099i
\(837\) 0 0
\(838\) 0.674993 + 0.360791i 0.674993 + 0.360791i
\(839\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(840\) 0 0
\(841\) −0.707107 0.707107i −0.707107 0.707107i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.95044 + 0.807898i 1.95044 + 0.807898i
\(846\) 0 0
\(847\) 0 0
\(848\) 1.54602i 1.54602i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(854\) 0 0
\(855\) 0.431207 + 0.431207i 0.431207 + 0.431207i
\(856\) −0.577774 + 0.0569057i −0.577774 + 0.0569057i
\(857\) −0.410525 + 0.410525i −0.410525 + 0.410525i −0.881921 0.471397i \(-0.843750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(858\) 1.75433 3.28212i 1.75433 3.28212i
\(859\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.91388 1.91388 0.956940 0.290285i \(-0.0937500\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(864\) 0.0485240 0.492672i 0.0485240 0.492672i
\(865\) −1.91388 −1.91388
\(866\) 1.26268 + 0.124363i 1.26268 + 0.124363i
\(867\) 0.485544 1.17221i 0.485544 1.17221i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −2.38704 + 2.38704i −2.38704 + 2.38704i
\(872\) 0 0
\(873\) −0.406540 0.406540i −0.406540 0.406540i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.17221 0.485544i −1.17221 0.485544i −0.290285 0.956940i \(-0.593750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(878\) 0 0
\(879\) 0.248726i 0.248726i
\(880\) −0.636379 1.53636i −0.636379 1.53636i
\(881\) 1.96157i 1.96157i −0.195090 0.980785i \(-0.562500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(882\) −0.386865 0.471397i −0.386865 0.471397i
\(883\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.09320 1.09320i −1.09320 1.09320i −0.995185 0.0980171i \(-0.968750\pi\)
−0.0980171 0.995185i \(-0.531250\pi\)
\(888\) 2.41661 + 0.733072i 2.41661 + 0.733072i
\(889\) 0 0
\(890\) 0 0
\(891\) −1.90192 + 0.787799i −1.90192 + 0.787799i
\(892\) 0.924678 + 0.183930i 0.924678 + 0.183930i
\(893\) 0 0
\(894\) −0.243946 + 2.47683i −0.243946 + 2.47683i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.598102 + 0.118970i 0.598102 + 0.118970i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 1.47945 + 0.448786i 1.47945 + 0.448786i
\(905\) 0 0
\(906\) 0 0
\(907\) 0.674993 + 1.62958i 0.674993 + 1.62958i 0.773010 + 0.634393i \(0.218750\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(908\) −0.523788 + 0.783904i −0.523788 + 0.783904i
\(909\) −0.936899 0.388076i −0.936899 0.388076i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 1.17221 0.485544i 1.17221 0.485544i
\(913\) 0 0
\(914\) 0 0
\(915\) −1.30249 0.539507i −1.30249 0.539507i
\(916\) 1.92388 0.382683i 1.92388 0.382683i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(920\) 0 0
\(921\) −0.845844 + 0.845844i −0.845844 + 0.845844i
\(922\) 0.360791 0.674993i 0.360791 0.674993i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.761681 1.83886i 0.761681 1.83886i
\(926\) 0 0
\(927\) 0.119545 0.119545
\(928\) 0 0
\(929\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(930\) 0 0
\(931\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(932\) 0 0
\(933\) −1.30249 + 0.539507i −1.30249 + 0.539507i
\(934\) 0 0
\(935\) 0 0
\(936\) 1.07045 0.105430i 1.07045 0.105430i
\(937\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.290285 0.956940i −0.290285 0.956940i
\(951\) 0.520868 + 0.520868i 0.520868 + 0.520868i
\(952\) 0 0
\(953\) −0.666656 + 0.666656i −0.666656 + 0.666656i −0.956940 0.290285i \(-0.906250\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(954\) −0.831470 0.444430i −0.831470 0.444430i
\(955\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(956\) −0.275899 + 1.38704i −0.275899 + 1.38704i
\(957\) 0 0
\(958\) −0.162997 + 1.65493i −0.162997 + 1.65493i
\(959\) 0 0
\(960\) 0.704900 1.05496i 0.704900 1.05496i
\(961\) 1.00000 1.00000
\(962\) 0.344109 3.49379i 0.344109 3.49379i
\(963\) −0.135486 + 0.327093i −0.135486 + 0.327093i
\(964\) 0 0
\(965\) −0.536376 + 0.222174i −0.536376 + 0.222174i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 0.832188 + 1.55691i 0.832188 + 1.55691i
\(969\) 0 0
\(970\) 0.273678 + 0.902197i 0.273678 + 0.902197i
\(971\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(972\) −0.894350 0.597585i −0.894350 0.597585i
\(973\) 0 0
\(974\) 0.980785 + 1.19509i 0.980785 + 1.19509i
\(975\) 2.23794i 2.23794i
\(976\) −0.785695 + 0.785695i −0.785695 + 0.785695i
\(977\) 0.196034i 0.196034i 0.995185 + 0.0980171i \(0.0312500\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(981\) 0 0
\(982\) 0 0
\(983\) −0.138617 0.138617i −0.138617 0.138617i 0.634393 0.773010i \(-0.281250\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −0.979938 1.46658i −0.979938 1.46658i
\(989\) 0 0
\(990\) −1.00921 0.0993984i −1.00921 0.0993984i
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(996\) 0 0
\(997\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(998\) −0.183930 + 0.344109i −0.183930 + 0.344109i
\(999\) −0.696744 + 0.696744i −0.696744 + 0.696744i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.1.cn.a.1709.4 32
5.4 even 2 inner 3040.1.cn.a.1709.5 yes 32
19.18 odd 2 inner 3040.1.cn.a.1709.5 yes 32
32.5 even 8 inner 3040.1.cn.a.2469.4 yes 32
95.94 odd 2 CM 3040.1.cn.a.1709.4 32
160.69 even 8 inner 3040.1.cn.a.2469.5 yes 32
608.37 odd 8 inner 3040.1.cn.a.2469.5 yes 32
3040.2469 odd 8 inner 3040.1.cn.a.2469.4 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.1.cn.a.1709.4 32 1.1 even 1 trivial
3040.1.cn.a.1709.4 32 95.94 odd 2 CM
3040.1.cn.a.1709.5 yes 32 5.4 even 2 inner
3040.1.cn.a.1709.5 yes 32 19.18 odd 2 inner
3040.1.cn.a.2469.4 yes 32 32.5 even 8 inner
3040.1.cn.a.2469.4 yes 32 3040.2469 odd 8 inner
3040.1.cn.a.2469.5 yes 32 160.69 even 8 inner
3040.1.cn.a.2469.5 yes 32 608.37 odd 8 inner