Properties

Label 306.2.b
Level $306$
Weight $2$
Character orbit 306.b
Rep. character $\chi_{306}(271,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $4$
Sturm bound $108$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 306.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(108\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(5\), \(47\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(306, [\chi])\).

Total New Old
Modular forms 62 8 54
Cusp forms 46 8 38
Eisenstein series 16 0 16

Trace form

\( 8 q + 8 q^{4} + 8 q^{16} + 8 q^{17} + 8 q^{25} + 16 q^{26} - 8 q^{34} - 8 q^{35} - 8 q^{38} - 16 q^{43} - 16 q^{47} - 24 q^{49} - 8 q^{50} - 24 q^{59} + 8 q^{64} - 32 q^{67} + 8 q^{68} - 16 q^{70} + 56 q^{83}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(306, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
306.2.b.a 306.b 17.b $2$ $2.443$ \(\Q(\sqrt{-1}) \) None 102.2.b.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+q^{4}+\beta q^{5}+\beta q^{7}-q^{8}+\cdots\)
306.2.b.b 306.b 17.b $2$ $2.443$ \(\Q(\sqrt{-2}) \) None 306.2.b.b \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+q^{4}+\beta q^{5}-3\beta q^{7}-q^{8}-\beta q^{10}+\cdots\)
306.2.b.c 306.b 17.b $2$ $2.443$ \(\Q(\sqrt{-2}) \) None 306.2.b.b \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+q^{4}+\beta q^{5}+3\beta q^{7}+q^{8}+\beta q^{10}+\cdots\)
306.2.b.d 306.b 17.b $2$ $2.443$ \(\Q(\sqrt{-2}) \) None 34.2.b.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+q^{4}+\beta q^{5}+q^{8}+\beta q^{10}+\beta q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(306, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(306, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)