Defining parameters
Level: | \( N \) | \(=\) | \( 306 = 2 \cdot 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 306.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(5\), \(47\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(306, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 62 | 8 | 54 |
Cusp forms | 46 | 8 | 38 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(306, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
306.2.b.a | $2$ | $2.443$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}+q^{4}+\beta q^{5}+\beta q^{7}-q^{8}+\cdots\) |
306.2.b.b | $2$ | $2.443$ | \(\Q(\sqrt{-2}) \) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}+q^{4}+\beta q^{5}-3\beta q^{7}-q^{8}-\beta q^{10}+\cdots\) |
306.2.b.c | $2$ | $2.443$ | \(\Q(\sqrt{-2}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}+q^{4}+\beta q^{5}+3\beta q^{7}+q^{8}+\beta q^{10}+\cdots\) |
306.2.b.d | $2$ | $2.443$ | \(\Q(\sqrt{-2}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}+q^{4}+\beta q^{5}+q^{8}+\beta q^{10}+\beta q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(306, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(306, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)