Properties

Label 3064.2
Level 3064
Weight 2
Dimension 164260
Nonzero newspaces 6
Sturm bound 1173504
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3064 = 2^{3} \cdot 383 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(1173504\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3064))\).

Total New Old
Modular forms 295668 165784 129884
Cusp forms 291085 164260 126825
Eisenstein series 4583 1524 3059

Trace form

\( 164260 q - 382 q^{2} - 382 q^{3} - 382 q^{4} - 382 q^{6} - 382 q^{7} - 382 q^{8} - 764 q^{9} - 382 q^{10} - 382 q^{11} - 382 q^{12} - 382 q^{14} - 382 q^{15} - 382 q^{16} - 764 q^{17} - 382 q^{18} - 382 q^{19}+ \cdots - 382 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3064))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3064.2.a \(\chi_{3064}(1, \cdot)\) 3064.2.a.a 2 1
3064.2.a.b 3
3064.2.a.c 19
3064.2.a.d 21
3064.2.a.e 24
3064.2.a.f 27
3064.2.b \(\chi_{3064}(3063, \cdot)\) None 0 1
3064.2.c \(\chi_{3064}(1533, \cdot)\) n/a 382 1
3064.2.h \(\chi_{3064}(1531, \cdot)\) n/a 382 1
3064.2.i \(\chi_{3064}(9, \cdot)\) n/a 18240 190
3064.2.j \(\chi_{3064}(11, \cdot)\) n/a 72580 190
3064.2.o \(\chi_{3064}(21, \cdot)\) n/a 72580 190
3064.2.p \(\chi_{3064}(15, \cdot)\) None 0 190

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3064))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3064)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(383))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(766))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1532))\)\(^{\oplus 2}\)