Defining parameters
Level: | \( N \) | = | \( 3064 = 2^{3} \cdot 383 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 6 \) | ||
Sturm bound: | \(1173504\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3064))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 295668 | 165784 | 129884 |
Cusp forms | 291085 | 164260 | 126825 |
Eisenstein series | 4583 | 1524 | 3059 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3064))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
3064.2.a | \(\chi_{3064}(1, \cdot)\) | 3064.2.a.a | 2 | 1 |
3064.2.a.b | 3 | |||
3064.2.a.c | 19 | |||
3064.2.a.d | 21 | |||
3064.2.a.e | 24 | |||
3064.2.a.f | 27 | |||
3064.2.b | \(\chi_{3064}(3063, \cdot)\) | None | 0 | 1 |
3064.2.c | \(\chi_{3064}(1533, \cdot)\) | n/a | 382 | 1 |
3064.2.h | \(\chi_{3064}(1531, \cdot)\) | n/a | 382 | 1 |
3064.2.i | \(\chi_{3064}(9, \cdot)\) | n/a | 18240 | 190 |
3064.2.j | \(\chi_{3064}(11, \cdot)\) | n/a | 72580 | 190 |
3064.2.o | \(\chi_{3064}(21, \cdot)\) | n/a | 72580 | 190 |
3064.2.p | \(\chi_{3064}(15, \cdot)\) | None | 0 | 190 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3064))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(3064)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(383))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(766))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1532))\)\(^{\oplus 2}\)