Properties

Label 3069.1.cd.b.2665.2
Level $3069$
Weight $1$
Character 3069.2665
Analytic conductor $1.532$
Analytic rank $0$
Dimension $8$
Projective image $A_{5}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3069,1,Mod(433,3069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3069, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3069.433");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3069 = 3^{2} \cdot 11 \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3069.cd (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.53163052377\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{5}\)
Projective field: Galois closure of 5.1.126630009.1

Embedding invariants

Embedding label 2665.2
Root \(-0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 3069.2665
Dual form 3069.1.cd.b.433.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30902 - 0.951057i) q^{2} +(0.500000 - 1.53884i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-0.309017 + 0.951057i) q^{7} +(-0.309017 - 0.951057i) q^{8} +O(q^{10})\) \(q+(1.30902 - 0.951057i) q^{2} +(0.500000 - 1.53884i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-0.309017 + 0.951057i) q^{7} +(-0.309017 - 0.951057i) q^{8} +1.61803 q^{10} +(0.951057 + 0.309017i) q^{11} +(-0.587785 - 0.809017i) q^{13} +(0.500000 + 1.53884i) q^{14} +(-0.951057 + 1.30902i) q^{17} +(1.30902 - 0.951057i) q^{20} +(1.53884 - 0.500000i) q^{22} -1.61803i q^{23} +(-1.53884 - 0.500000i) q^{26} +(1.30902 + 0.951057i) q^{28} +(0.587785 + 0.190983i) q^{29} +(0.587785 + 0.809017i) q^{31} +1.00000 q^{32} +2.61803i q^{34} +(-0.809017 + 0.587785i) q^{35} +(-0.951057 - 0.309017i) q^{37} +(0.309017 - 0.951057i) q^{40} +0.618034i q^{43} +(0.951057 - 1.30902i) q^{44} +(-1.53884 - 2.11803i) q^{46} +(-0.500000 - 1.53884i) q^{47} +(-1.53884 + 0.500000i) q^{52} +(0.587785 + 0.809017i) q^{55} +1.00000 q^{56} +(0.951057 - 0.309017i) q^{58} +(0.587785 - 0.809017i) q^{61} +(1.53884 + 0.500000i) q^{62} +(1.30902 - 0.951057i) q^{64} -1.00000i q^{65} -1.00000 q^{67} +(1.53884 + 2.11803i) q^{68} +(-0.500000 + 1.53884i) q^{70} +(-0.809017 - 0.587785i) q^{71} +(0.951057 + 0.309017i) q^{73} +(-1.53884 + 0.500000i) q^{74} +(-0.587785 + 0.809017i) q^{77} +(-0.587785 - 0.809017i) q^{79} +(-0.587785 + 0.809017i) q^{83} +(-1.53884 + 0.500000i) q^{85} +(0.587785 + 0.809017i) q^{86} -1.00000i q^{88} -1.00000i q^{89} +(0.951057 - 0.309017i) q^{91} +(-2.48990 - 0.809017i) q^{92} +(-2.11803 - 1.53884i) q^{94} +(-0.809017 + 0.587785i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 4 q^{4} + 2 q^{5} + 2 q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 6 q^{2} + 4 q^{4} + 2 q^{5} + 2 q^{7} + 2 q^{8} + 4 q^{10} + 4 q^{14} + 6 q^{20} + 6 q^{28} + 8 q^{32} - 2 q^{35} - 2 q^{40} - 4 q^{47} + 8 q^{56} + 6 q^{64} - 8 q^{67} - 4 q^{70} - 2 q^{71} - 8 q^{94} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3069\mathbb{Z}\right)^\times\).

\(n\) \(838\) \(2080\) \(2729\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(3\) 0 0
\(4\) 0.500000 1.53884i 0.500000 1.53884i
\(5\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(6\) 0 0
\(7\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(8\) −0.309017 0.951057i −0.309017 0.951057i
\(9\) 0 0
\(10\) 1.61803 1.61803
\(11\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(12\) 0 0
\(13\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(14\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(15\) 0 0
\(16\) 0 0
\(17\) −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i \(0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(18\) 0 0
\(19\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(20\) 1.30902 0.951057i 1.30902 0.951057i
\(21\) 0 0
\(22\) 1.53884 0.500000i 1.53884 0.500000i
\(23\) 1.61803i 1.61803i −0.587785 0.809017i \(-0.700000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.53884 0.500000i −1.53884 0.500000i
\(27\) 0 0
\(28\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(29\) 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i \(-0.300000\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(32\) 1.00000 1.00000
\(33\) 0 0
\(34\) 2.61803i 2.61803i
\(35\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(36\) 0 0
\(37\) −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i \(-0.566667\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.309017 0.951057i 0.309017 0.951057i
\(41\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(42\) 0 0
\(43\) 0.618034i 0.618034i 0.951057 + 0.309017i \(0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(44\) 0.951057 1.30902i 0.951057 1.30902i
\(45\) 0 0
\(46\) −1.53884 2.11803i −1.53884 2.11803i
\(47\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(53\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(54\) 0 0
\(55\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(56\) 1.00000 1.00000
\(57\) 0 0
\(58\) 0.951057 0.309017i 0.951057 0.309017i
\(59\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(60\) 0 0
\(61\) 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i \(-0.633333\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(62\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(63\) 0 0
\(64\) 1.30902 0.951057i 1.30902 0.951057i
\(65\) 1.00000i 1.00000i
\(66\) 0 0
\(67\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 1.53884 + 2.11803i 1.53884 + 2.11803i
\(69\) 0 0
\(70\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(71\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(72\) 0 0
\(73\) 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i \(-0.233333\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(74\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(75\) 0 0
\(76\) 0 0
\(77\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(78\) 0 0
\(79\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i \(-0.966667\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(84\) 0 0
\(85\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(86\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(87\) 0 0
\(88\) 1.00000i 1.00000i
\(89\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(90\) 0 0
\(91\) 0.951057 0.309017i 0.951057 0.309017i
\(92\) −2.48990 0.809017i −2.48990 0.809017i
\(93\) 0 0
\(94\) −2.11803 1.53884i −2.11803 1.53884i
\(95\) 0 0
\(96\) 0 0
\(97\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(102\) 0 0
\(103\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(104\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(105\) 0 0
\(106\) 0 0
\(107\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(108\) 0 0
\(109\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(110\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(111\) 0 0
\(112\) 0 0
\(113\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(114\) 0 0
\(115\) 0.951057 1.30902i 0.951057 1.30902i
\(116\) 0.587785 0.809017i 0.587785 0.809017i
\(117\) 0 0
\(118\) 0 0
\(119\) −0.951057 1.30902i −0.951057 1.30902i
\(120\) 0 0
\(121\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(122\) 1.61803i 1.61803i
\(123\) 0 0
\(124\) 1.53884 0.500000i 1.53884 0.500000i
\(125\) 0.309017 0.951057i 0.309017 0.951057i
\(126\) 0 0
\(127\) −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i \(0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(128\) 0.500000 1.53884i 0.500000 1.53884i
\(129\) 0 0
\(130\) −0.951057 1.30902i −0.951057 1.30902i
\(131\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(135\) 0 0
\(136\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(137\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(138\) 0 0
\(139\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(140\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(141\) 0 0
\(142\) −1.61803 −1.61803
\(143\) −0.309017 0.951057i −0.309017 0.951057i
\(144\) 0 0
\(145\) 0.363271 + 0.500000i 0.363271 + 0.500000i
\(146\) 1.53884 0.500000i 1.53884 0.500000i
\(147\) 0 0
\(148\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(149\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(150\) 0 0
\(151\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1.61803i 1.61803i
\(155\) 1.00000i 1.00000i
\(156\) 0 0
\(157\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(158\) −1.53884 0.500000i −1.53884 0.500000i
\(159\) 0 0
\(160\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(161\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(162\) 0 0
\(163\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.61803i 1.61803i
\(167\) 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i \(0.100000\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −1.53884 + 2.11803i −1.53884 + 2.11803i
\(171\) 0 0
\(172\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(173\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −0.951057 1.30902i −0.951057 1.30902i
\(179\) 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i \(-0.433333\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(180\) 0 0
\(181\) 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i \(-0.633333\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(182\) 0.951057 1.30902i 0.951057 1.30902i
\(183\) 0 0
\(184\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(185\) −0.587785 0.809017i −0.587785 0.809017i
\(186\) 0 0
\(187\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(188\) −2.61803 −2.61803
\(189\) 0 0
\(190\) 0 0
\(191\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(192\) 0 0
\(193\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(194\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(195\) 0 0
\(196\) 0 0
\(197\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(198\) 0 0
\(199\) 1.61803i 1.61803i −0.587785 0.809017i \(-0.700000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0.500000 1.53884i 0.500000 1.53884i
\(203\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(204\) 0 0
\(205\) 0 0
\(206\) 0.809017 + 2.48990i 0.809017 + 2.48990i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −2.11803 1.53884i −2.11803 1.53884i
\(215\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(216\) 0 0
\(217\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(218\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(219\) 0 0
\(220\) 1.53884 0.500000i 1.53884 0.500000i
\(221\) 1.61803 1.61803
\(222\) 0 0
\(223\) −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i \(-0.700000\pi\)
1.00000i \(0.5\pi\)
\(224\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(225\) 0 0
\(226\) −1.30902 0.951057i −1.30902 0.951057i
\(227\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(228\) 0 0
\(229\) 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i \(-0.0333333\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(230\) 2.61803i 2.61803i
\(231\) 0 0
\(232\) 0.618034i 0.618034i
\(233\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(234\) 0 0
\(235\) 0.500000 1.53884i 0.500000 1.53884i
\(236\) 0 0
\(237\) 0 0
\(238\) −2.48990 0.809017i −2.48990 0.809017i
\(239\) −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i \(-0.766667\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(240\) 0 0
\(241\) 1.61803i 1.61803i 0.587785 + 0.809017i \(0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(242\) 1.61803 1.61803
\(243\) 0 0
\(244\) −0.951057 1.30902i −0.951057 1.30902i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0.587785 0.809017i 0.587785 0.809017i
\(249\) 0 0
\(250\) −0.500000 1.53884i −0.500000 1.53884i
\(251\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(252\) 0 0
\(253\) 0.500000 1.53884i 0.500000 1.53884i
\(254\) 2.61803i 2.61803i
\(255\) 0 0
\(256\) −0.309017 0.951057i −0.309017 0.951057i
\(257\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0.587785 0.809017i 0.587785 0.809017i
\(260\) −1.53884 0.500000i −1.53884 0.500000i
\(261\) 0 0
\(262\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(263\) 0.618034i 0.618034i 0.951057 + 0.309017i \(0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(269\) −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i \(-0.966667\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(270\) 0 0
\(271\) −0.587785 0.190983i −0.587785 0.190983i 1.00000i \(-0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i \(0.100000\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(281\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(282\) 0 0
\(283\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(284\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(285\) 0 0
\(286\) −1.30902 0.951057i −1.30902 0.951057i
\(287\) 0 0
\(288\) 0 0
\(289\) −0.500000 1.53884i −0.500000 1.53884i
\(290\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(291\) 0 0
\(292\) 0.951057 1.30902i 0.951057 1.30902i
\(293\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.00000i 1.00000i
\(297\) 0 0
\(298\) −1.00000 −1.00000
\(299\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(300\) 0 0
\(301\) −0.587785 0.190983i −0.587785 0.190983i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.951057 0.309017i 0.951057 0.309017i
\(306\) 0 0
\(307\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(308\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(309\) 0 0
\(310\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(311\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(312\) 0 0
\(313\) −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(314\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(315\) 0 0
\(316\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(317\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(318\) 0 0
\(319\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(320\) 1.61803 1.61803
\(321\) 0 0
\(322\) 2.48990 0.809017i 2.48990 0.809017i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(327\) 0 0
\(328\) 0 0
\(329\) 1.61803 1.61803
\(330\) 0 0
\(331\) 0.618034i 0.618034i −0.951057 0.309017i \(-0.900000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(332\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(333\) 0 0
\(334\) 2.48990 + 0.809017i 2.48990 + 0.809017i
\(335\) −0.809017 0.587785i −0.809017 0.587785i
\(336\) 0 0
\(337\) 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i \(-0.233333\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 2.61803i 2.61803i
\(341\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(342\) 0 0
\(343\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(344\) 0.587785 0.190983i 0.587785 0.190983i
\(345\) 0 0
\(346\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(347\) 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i \(-0.633333\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(348\) 0 0
\(349\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −0.309017 0.951057i −0.309017 0.951057i
\(356\) −1.53884 0.500000i −1.53884 0.500000i
\(357\) 0 0
\(358\) 0.951057 1.30902i 0.951057 1.30902i
\(359\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(360\) 0 0
\(361\) 0.809017 0.587785i 0.809017 0.587785i
\(362\) 1.61803i 1.61803i
\(363\) 0 0
\(364\) 1.61803i 1.61803i
\(365\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(366\) 0 0
\(367\) −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i \(-0.700000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −1.53884 0.500000i −1.53884 0.500000i
\(371\) 0 0
\(372\) 0 0
\(373\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(374\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(375\) 0 0
\(376\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(377\) −0.190983 0.587785i −0.190983 0.587785i
\(378\) 0 0
\(379\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.309017 0.951057i −0.309017 0.951057i
\(383\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(384\) 0 0
\(385\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(386\) 0 0
\(387\) 0 0
\(388\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(389\) 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i \(-0.300000\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(392\) 0 0
\(393\) 0 0
\(394\) −0.951057 1.30902i −0.951057 1.30902i
\(395\) 1.00000i 1.00000i
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) −1.53884 2.11803i −1.53884 2.11803i
\(399\) 0 0
\(400\) 0 0
\(401\) −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(402\) 0 0
\(403\) 0.309017 0.951057i 0.309017 0.951057i
\(404\) −0.500000 1.53884i −0.500000 1.53884i
\(405\) 0 0
\(406\) 1.00000i 1.00000i
\(407\) −0.809017 0.587785i −0.809017 0.587785i
\(408\) 0 0
\(409\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(413\) 0 0
\(414\) 0 0
\(415\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(416\) −0.587785 0.809017i −0.587785 0.809017i
\(417\) 0 0
\(418\) 0 0
\(419\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(428\) −2.61803 −2.61803
\(429\) 0 0
\(430\) 1.00000i 1.00000i
\(431\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(432\) 0 0
\(433\) 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i \(-0.100000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(434\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(435\) 0 0
\(436\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(437\) 0 0
\(438\) 0 0
\(439\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(440\) 0.587785 0.809017i 0.587785 0.809017i
\(441\) 0 0
\(442\) 2.11803 1.53884i 2.11803 1.53884i
\(443\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(444\) 0 0
\(445\) 0.587785 0.809017i 0.587785 0.809017i
\(446\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(447\) 0 0
\(448\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(449\) 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i \(-0.100000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.61803 −1.61803
\(453\) 0 0
\(454\) 0 0
\(455\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(456\) 0 0
\(457\) 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i \(-0.633333\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(458\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(459\) 0 0
\(460\) −1.53884 2.11803i −1.53884 2.11803i
\(461\) 1.61803i 1.61803i −0.587785 0.809017i \(-0.700000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(462\) 0 0
\(463\) 1.61803i 1.61803i −0.587785 0.809017i \(-0.700000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(468\) 0 0
\(469\) 0.309017 0.951057i 0.309017 0.951057i
\(470\) −0.809017 2.48990i −0.809017 2.48990i
\(471\) 0 0
\(472\) 0 0
\(473\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.48990 + 0.809017i −2.48990 + 0.809017i
\(477\) 0 0
\(478\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(479\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(480\) 0 0
\(481\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(482\) 1.53884 + 2.11803i 1.53884 + 2.11803i
\(483\) 0 0
\(484\) 1.30902 0.951057i 1.30902 0.951057i
\(485\) −1.00000 −1.00000
\(486\) 0 0
\(487\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(488\) −0.951057 0.309017i −0.951057 0.309017i
\(489\) 0 0
\(490\) 0 0
\(491\) 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i \(-0.233333\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(492\) 0 0
\(493\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.809017 0.587785i 0.809017 0.587785i
\(498\) 0 0
\(499\) −0.587785 0.190983i −0.587785 0.190983i 1.00000i \(-0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(500\) −1.30902 0.951057i −1.30902 0.951057i
\(501\) 0 0
\(502\) −1.53884 0.500000i −1.53884 0.500000i
\(503\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(504\) 0 0
\(505\) 1.00000 1.00000
\(506\) −0.809017 2.48990i −0.809017 2.48990i
\(507\) 0 0
\(508\) 1.53884 + 2.11803i 1.53884 + 2.11803i
\(509\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(510\) 0 0
\(511\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(512\) 0 0
\(513\) 0 0
\(514\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(515\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(516\) 0 0
\(517\) 1.61803i 1.61803i
\(518\) 1.61803i 1.61803i
\(519\) 0 0
\(520\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(521\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(522\) 0 0
\(523\) −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i \(0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(524\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(525\) 0 0
\(526\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(527\) −1.61803 −1.61803
\(528\) 0 0
\(529\) −1.61803 −1.61803
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.500000 1.53884i 0.500000 1.53884i
\(536\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(537\) 0 0
\(538\) 1.61803i 1.61803i
\(539\) 0 0
\(540\) 0 0
\(541\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(542\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(543\) 0 0
\(544\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(545\) −1.30902 0.951057i −1.30902 0.951057i
\(546\) 0 0
\(547\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.951057 0.309017i 0.951057 0.309017i
\(554\) 2.48990 + 0.809017i 2.48990 + 0.809017i
\(555\) 0 0
\(556\) 0 0
\(557\) −0.587785 0.190983i −0.587785 0.190983i 1.00000i \(-0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(558\) 0 0
\(559\) 0.500000 0.363271i 0.500000 0.363271i
\(560\) 0 0
\(561\) 0 0
\(562\) 1.00000 1.00000
\(563\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(564\) 0 0
\(565\) 0.309017 0.951057i 0.309017 0.951057i
\(566\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(567\) 0 0
\(568\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(569\) −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i \(-0.766667\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(570\) 0 0
\(571\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(572\) −1.61803 −1.61803
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(578\) −2.11803 1.53884i −2.11803 1.53884i
\(579\) 0 0
\(580\) 0.951057 0.309017i 0.951057 0.309017i
\(581\) −0.587785 0.809017i −0.587785 0.809017i
\(582\) 0 0
\(583\) 0 0
\(584\) 1.00000i 1.00000i
\(585\) 0 0
\(586\) −0.500000 1.53884i −0.500000 1.53884i
\(587\) 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i \(-0.300000\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(594\) 0 0
\(595\) 1.61803i 1.61803i
\(596\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(597\) 0 0
\(598\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(599\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(600\) 0 0
\(601\) −0.587785 0.190983i −0.587785 0.190983i 1.00000i \(-0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(602\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(603\) 0 0
\(604\) 0 0
\(605\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(606\) 0 0
\(607\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0.951057 1.30902i 0.951057 1.30902i
\(611\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(612\) 0 0
\(613\) 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i \(-0.300000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(614\) 0.809017 0.587785i 0.809017 0.587785i
\(615\) 0 0
\(616\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(617\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(618\) 0 0
\(619\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(620\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(621\) 0 0
\(622\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(623\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(624\) 0 0
\(625\) 0.809017 0.587785i 0.809017 0.587785i
\(626\) 1.00000i 1.00000i
\(627\) 0 0
\(628\) 1.61803 1.61803
\(629\) 1.30902 0.951057i 1.30902 0.951057i
\(630\) 0 0
\(631\) 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i \(-0.100000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(632\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(633\) 0 0
\(634\) 0.500000 1.53884i 0.500000 1.53884i
\(635\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(636\) 0 0
\(637\) 0 0
\(638\) 1.00000 1.00000
\(639\) 0 0
\(640\) 1.30902 0.951057i 1.30902 0.951057i
\(641\) −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(642\) 0 0
\(643\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(644\) 1.53884 2.11803i 1.53884 2.11803i
\(645\) 0 0
\(646\) 0 0
\(647\) −0.363271 0.500000i −0.363271 0.500000i 0.587785 0.809017i \(-0.300000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(653\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(654\) 0 0
\(655\) −0.809017 0.587785i −0.809017 0.587785i
\(656\) 0 0
\(657\) 0 0
\(658\) 2.11803 1.53884i 2.11803 1.53884i
\(659\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(660\) 0 0
\(661\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) −0.587785 0.809017i −0.587785 0.809017i
\(663\) 0 0
\(664\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.309017 0.951057i 0.309017 0.951057i
\(668\) 2.48990 0.809017i 2.48990 0.809017i
\(669\) 0 0
\(670\) −1.61803 −1.61803
\(671\) 0.809017 0.587785i 0.809017 0.587785i
\(672\) 0 0
\(673\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(674\) 1.53884 0.500000i 1.53884 0.500000i
\(675\) 0 0
\(676\) 0 0
\(677\) 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i \(-0.700000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(678\) 0 0
\(679\) −0.309017 0.951057i −0.309017 0.951057i
\(680\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(681\) 0 0
\(682\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(683\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(692\) 1.61803 1.61803
\(693\) 0 0
\(694\) 1.61803i 1.61803i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.53884 0.500000i 1.53884 0.500000i
\(705\) 0 0
\(706\) 0 0
\(707\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(708\) 0 0
\(709\) −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i \(0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(710\) −1.30902 0.951057i −1.30902 0.951057i
\(711\) 0 0
\(712\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(713\) 1.30902 0.951057i 1.30902 0.951057i
\(714\) 0 0
\(715\) 0.309017 0.951057i 0.309017 0.951057i
\(716\) 1.61803i 1.61803i
\(717\) 0 0
\(718\) 0 0
\(719\) 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i \(-0.300000\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −1.30902 0.951057i −1.30902 0.951057i
\(722\) 0.500000 1.53884i 0.500000 1.53884i
\(723\) 0 0
\(724\) −0.951057 1.30902i −0.951057 1.30902i
\(725\) 0 0
\(726\) 0 0
\(727\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(728\) −0.587785 0.809017i −0.587785 0.809017i
\(729\) 0 0
\(730\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(731\) −0.809017 0.587785i −0.809017 0.587785i
\(732\) 0 0
\(733\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(734\) −2.48990 + 0.809017i −2.48990 + 0.809017i
\(735\) 0 0
\(736\) 1.61803i 1.61803i
\(737\) −0.951057 0.309017i −0.951057 0.309017i
\(738\) 0 0
\(739\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(740\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(741\) 0 0
\(742\) 0 0
\(743\) −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i \(-0.966667\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(744\) 0 0
\(745\) −0.190983 0.587785i −0.190983 0.587785i
\(746\) 2.11803 1.53884i 2.11803 1.53884i
\(747\) 0 0
\(748\) 0.809017 + 2.48990i 0.809017 + 2.48990i
\(749\) 1.61803 1.61803
\(750\) 0 0
\(751\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −0.809017 0.587785i −0.809017 0.587785i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i \(-0.0333333\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(762\) 0 0
\(763\) 0.500000 1.53884i 0.500000 1.53884i
\(764\) −0.809017 0.587785i −0.809017 0.587785i
\(765\) 0 0
\(766\) −1.53884 0.500000i −1.53884 0.500000i
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(771\) 0 0
\(772\) 0 0
\(773\) 0.587785 0.190983i 0.587785 0.190983i 1.00000i \(-0.5\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(777\) 0 0
\(778\) 0.951057 0.309017i 0.951057 0.309017i
\(779\) 0 0
\(780\) 0 0
\(781\) −0.587785 0.809017i −0.587785 0.809017i
\(782\) 4.23607 4.23607
\(783\) 0 0
\(784\) 0 0
\(785\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(786\) 0 0
\(787\) −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i \(0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(788\) −1.53884 0.500000i −1.53884 0.500000i
\(789\) 0 0
\(790\) −0.951057 1.30902i −0.951057 1.30902i
\(791\) 1.00000 1.00000
\(792\) 0 0
\(793\) −1.00000 −1.00000
\(794\) 0 0
\(795\) 0 0
\(796\) −2.48990 0.809017i −2.48990 0.809017i
\(797\) 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i \(-0.633333\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(798\) 0 0
\(799\) 2.48990 + 0.809017i 2.48990 + 0.809017i
\(800\) 0 0
\(801\) 0 0
\(802\) 1.00000i 1.00000i
\(803\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(804\) 0 0
\(805\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(806\) −0.500000 1.53884i −0.500000 1.53884i
\(807\) 0 0
\(808\) −0.809017 0.587785i −0.809017 0.587785i
\(809\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(810\) 0 0
\(811\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(812\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(813\) 0 0
\(814\) −1.61803 −1.61803
\(815\) −0.618034 −0.618034
\(816\) 0 0
\(817\) 0 0
\(818\) −1.53884 0.500000i −1.53884 0.500000i
\(819\) 0 0
\(820\) 0 0
\(821\) 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i \(-0.233333\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(822\) 0 0
\(823\) −0.363271 0.500000i −0.363271 0.500000i 0.587785 0.809017i \(-0.300000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(824\) 1.61803 1.61803
\(825\) 0 0
\(826\) 0 0
\(827\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(828\) 0 0
\(829\) 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i \(-0.233333\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(830\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(831\) 0 0
\(832\) −1.53884 0.500000i −1.53884 0.500000i
\(833\) 0 0
\(834\) 0 0
\(835\) 1.61803i 1.61803i
\(836\) 0 0
\(837\) 0 0
\(838\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(839\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(840\) 0 0
\(841\) −0.500000 0.363271i −0.500000 0.363271i
\(842\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(852\) 0 0
\(853\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(854\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(855\) 0 0
\(856\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(857\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(858\) 0 0
\(859\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(861\) 0 0
\(862\) 0.500000 1.53884i 0.500000 1.53884i
\(863\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(864\) 0 0
\(865\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(866\) 2.48990 0.809017i 2.48990 0.809017i
\(867\) 0 0
\(868\) 1.61803i 1.61803i
\(869\) −0.309017 0.951057i −0.309017 0.951057i
\(870\) 0 0
\(871\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(872\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(873\) 0 0
\(874\) 0 0
\(875\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(876\) 0 0
\(877\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(878\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(884\) 0.809017 2.48990i 0.809017 2.48990i
\(885\) 0 0
\(886\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(887\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(888\) 0 0
\(889\) −0.951057 1.30902i −0.951057 1.30902i
\(890\) 1.61803i 1.61803i
\(891\) 0 0
\(892\) 1.00000i 1.00000i
\(893\) 0 0
\(894\) 0 0
\(895\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(896\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(897\) 0 0
\(898\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(899\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(905\) 0.951057 0.309017i 0.951057 0.309017i
\(906\) 0 0
\(907\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 1.53884 0.500000i 1.53884 0.500000i
\(911\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(912\) 0 0
\(913\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(914\) 1.61803i 1.61803i
\(915\) 0 0
\(916\) 1.53884 0.500000i 1.53884 0.500000i
\(917\) 0.309017 0.951057i 0.309017 0.951057i
\(918\) 0 0
\(919\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(920\) −1.53884 0.500000i −1.53884 0.500000i
\(921\) 0 0
\(922\) −1.53884 2.11803i −1.53884 2.11803i
\(923\) 1.00000i 1.00000i
\(924\) 0 0
\(925\) 0 0
\(926\) −1.53884 2.11803i −1.53884 2.11803i
\(927\) 0 0
\(928\) 0.587785 + 0.190983i 0.587785 + 0.190983i
\(929\) 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i \(-0.700000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 1.61803 1.61803
\(935\) −1.61803 −1.61803
\(936\) 0 0
\(937\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(938\) −0.500000 1.53884i −0.500000 1.53884i
\(939\) 0 0
\(940\) −2.11803 1.53884i −2.11803 1.53884i
\(941\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −0.309017 0.951057i −0.309017 0.951057i
\(950\) 0 0
\(951\) 0 0
\(952\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(953\) 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i \(-0.100000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(954\) 0 0
\(955\) 0.500000 0.363271i 0.500000 0.363271i
\(956\) 1.61803i 1.61803i
\(957\) 0 0
\(958\) 1.00000 1.00000
\(959\) 0 0
\(960\) 0 0
\(961\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(962\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(963\) 0 0
\(964\) 2.48990 + 0.809017i 2.48990 + 0.809017i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0.309017 0.951057i 0.309017 0.951057i
\(969\) 0 0
\(970\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(971\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(978\) 0 0
\(979\) 0.309017 0.951057i 0.309017 0.951057i
\(980\) 0 0
\(981\) 0 0
\(982\) 1.53884 0.500000i 1.53884 0.500000i
\(983\) 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i \(-0.300000\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0.587785 0.809017i 0.587785 0.809017i
\(986\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(987\) 0 0
\(988\) 0 0
\(989\) 1.00000 1.00000
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(993\) 0 0
\(994\) 0.500000 1.53884i 0.500000 1.53884i
\(995\) 0.951057 1.30902i 0.951057 1.30902i
\(996\) 0 0
\(997\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(998\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3069.1.cd.b.2665.2 yes 8
3.2 odd 2 3069.1.cd.a.2665.1 yes 8
11.4 even 5 inner 3069.1.cd.b.433.1 yes 8
31.30 odd 2 inner 3069.1.cd.b.2665.1 yes 8
33.26 odd 10 3069.1.cd.a.433.2 yes 8
93.92 even 2 3069.1.cd.a.2665.2 yes 8
341.92 odd 10 inner 3069.1.cd.b.433.2 yes 8
1023.92 even 10 3069.1.cd.a.433.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3069.1.cd.a.433.1 8 1023.92 even 10
3069.1.cd.a.433.2 yes 8 33.26 odd 10
3069.1.cd.a.2665.1 yes 8 3.2 odd 2
3069.1.cd.a.2665.2 yes 8 93.92 even 2
3069.1.cd.b.433.1 yes 8 11.4 even 5 inner
3069.1.cd.b.433.2 yes 8 341.92 odd 10 inner
3069.1.cd.b.2665.1 yes 8 31.30 odd 2 inner
3069.1.cd.b.2665.2 yes 8 1.1 even 1 trivial