Defining parameters
Level: | \( N \) | \(=\) | \( 308 = 2^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 308.s (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 308 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(308, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 24 | 0 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 16 | 16 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(308, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
308.1.s.a | $4$ | $0.154$ | \(\Q(\zeta_{10})\) | $D_{10}$ | \(\Q(\sqrt{-7}) \) | None | \(-1\) | \(0\) | \(0\) | \(1\) | \(q+\zeta_{10}^{4}q^{2}-\zeta_{10}^{3}q^{4}-\zeta_{10}^{2}q^{7}+\cdots\) |
308.1.s.b | $4$ | $0.154$ | \(\Q(\zeta_{10})\) | $D_{10}$ | \(\Q(\sqrt{-7}) \) | None | \(1\) | \(0\) | \(0\) | \(-1\) | \(q+\zeta_{10}^{3}q^{2}-\zeta_{10}q^{4}+\zeta_{10}^{2}q^{7}-\zeta_{10}^{4}q^{8}+\cdots\) |