Defining parameters
Level: | \( N \) | \(=\) | \( 308 = 2^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 308.z (of order \(30\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
Character field: | \(\Q(\zeta_{30})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(308, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 432 | 64 | 368 |
Cusp forms | 336 | 64 | 272 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(308, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
308.2.z.a | $64$ | $2.459$ | None | \(0\) | \(0\) | \(-6\) | \(5\) |
Decomposition of \(S_{2}^{\mathrm{old}}(308, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(308, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 2}\)