Properties

Label 308.2.z
Level $308$
Weight $2$
Character orbit 308.z
Rep. character $\chi_{308}(17,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $64$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.z (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(308, [\chi])\).

Total New Old
Modular forms 432 64 368
Cusp forms 336 64 272
Eisenstein series 96 0 96

Trace form

\( 64 q - 6 q^{5} + 5 q^{7} - 14 q^{9} + q^{11} + 24 q^{15} - 30 q^{17} + 2 q^{23} - 14 q^{25} + 20 q^{29} - 18 q^{31} + 54 q^{33} - 45 q^{35} - 2 q^{37} + 20 q^{39} + 18 q^{45} + 12 q^{47} + 9 q^{49} - 28 q^{53}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(308, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
308.2.z.a 308.z 77.n $64$ $2.459$ None 308.2.z.a \(0\) \(0\) \(-6\) \(5\) $\mathrm{SU}(2)[C_{30}]$

Decomposition of \(S_{2}^{\mathrm{old}}(308, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(308, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 2}\)