Defining parameters
Level: | \( N \) | = | \( 310 = 2 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(46080\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(310))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20400 | 6150 | 14250 |
Cusp forms | 19920 | 6150 | 13770 |
Eisenstein series | 480 | 0 | 480 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(310))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
310.8.a | \(\chi_{310}(1, \cdot)\) | 310.8.a.a | 6 | 1 |
310.8.a.b | 8 | |||
310.8.a.c | 8 | |||
310.8.a.d | 9 | |||
310.8.a.e | 9 | |||
310.8.a.f | 10 | |||
310.8.a.g | 10 | |||
310.8.a.h | 10 | |||
310.8.b | \(\chi_{310}(249, \cdot)\) | n/a | 104 | 1 |
310.8.e | \(\chi_{310}(191, \cdot)\) | n/a | 152 | 2 |
310.8.f | \(\chi_{310}(123, \cdot)\) | n/a | 224 | 2 |
310.8.h | \(\chi_{310}(101, \cdot)\) | n/a | 288 | 4 |
310.8.k | \(\chi_{310}(129, \cdot)\) | n/a | 224 | 2 |
310.8.n | \(\chi_{310}(39, \cdot)\) | n/a | 448 | 4 |
310.8.p | \(\chi_{310}(37, \cdot)\) | n/a | 448 | 4 |
310.8.q | \(\chi_{310}(41, \cdot)\) | n/a | 608 | 8 |
310.8.s | \(\chi_{310}(23, \cdot)\) | n/a | 896 | 8 |
310.8.t | \(\chi_{310}(9, \cdot)\) | n/a | 896 | 8 |
310.8.w | \(\chi_{310}(3, \cdot)\) | n/a | 1792 | 16 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(310))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(310)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(155))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(310))\)\(^{\oplus 1}\)