Properties

Label 3104.1.ca
Level $3104$
Weight $1$
Character orbit 3104.ca
Rep. character $\chi_{3104}(479,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $0$
Newform subspaces $0$
Sturm bound $392$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3104 = 2^{5} \cdot 97 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3104.ca (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 388 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 0 \)
Sturm bound: \(392\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3104, [\chi])\).

Total New Old
Modular forms 48 0 48
Cusp forms 16 0 16
Eisenstein series 32 0 32

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 0

Decomposition of \(S_{1}^{\mathrm{old}}(3104, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3104, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(388, [\chi])\)\(^{\oplus 4}\)