Properties

Label 3104.1.dr
Level $3104$
Weight $1$
Character orbit 3104.dr
Rep. character $\chi_{3104}(431,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $8$
Newform subspaces $1$
Sturm bound $392$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3104 = 2^{5} \cdot 97 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3104.dr (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 776 \)
Character field: \(\Q(\zeta_{24})\)
Newform subspaces: \( 1 \)
Sturm bound: \(392\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3104, [\chi])\).

Total New Old
Modular forms 96 24 72
Cusp forms 32 8 24
Eisenstein series 64 16 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + 4 q^{3} - 12 q^{9} + 8 q^{19} - 12 q^{27} - 4 q^{51} + 4 q^{57} - 4 q^{59} + 8 q^{81} + 4 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3104, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3104.1.dr.a 3104.dr 776.ah $8$ $1.549$ \(\Q(\zeta_{24})\) $D_{24}$ \(\Q(\sqrt{-2}) \) None 776.1.bh.a \(0\) \(4\) \(0\) \(0\) \(q+(\zeta_{24}^{4}+\zeta_{24}^{6})q^{3}+(-1+\zeta_{24}^{8}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3104, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3104, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(776, [\chi])\)\(^{\oplus 3}\)