Defining parameters
Level: | \( N \) | \(=\) | \( 3104 = 2^{5} \cdot 97 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3104.dr (of order \(24\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 776 \) |
Character field: | \(\Q(\zeta_{24})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(392\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3104, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 96 | 24 | 72 |
Cusp forms | 32 | 8 | 24 |
Eisenstein series | 64 | 16 | 48 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3104, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3104.1.dr.a | $8$ | $1.549$ | \(\Q(\zeta_{24})\) | $D_{24}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q+(\zeta_{24}^{4}+\zeta_{24}^{6})q^{3}+(-1+\zeta_{24}^{8}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3104, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3104, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(776, [\chi])\)\(^{\oplus 3}\)