Properties

Label 3104.1.y
Level $3104$
Weight $1$
Character orbit 3104.y
Rep. character $\chi_{3104}(255,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $392$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3104 = 2^{5} \cdot 97 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3104.y (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 388 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(392\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3104, [\chi])\).

Total New Old
Modular forms 36 4 32
Cusp forms 20 4 16
Eisenstein series 16 0 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 4 0 0

Trace form

\( 4 q + 2 q^{5} - 2 q^{13} + 2 q^{17} - 2 q^{21} - 2 q^{29} + 4 q^{33} - 2 q^{37} + 2 q^{41} + 2 q^{53} + 4 q^{57} + 2 q^{61} + 2 q^{65} + 4 q^{69} - 2 q^{73} - 4 q^{77} + 2 q^{81} + 4 q^{85} - 8 q^{89} - 2 q^{93}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3104, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3104.1.y.a 3104.y 388.i $4$ $1.549$ \(\Q(\zeta_{12})\) $A_{4}$ None None 3104.1.y.a \(0\) \(0\) \(2\) \(0\) \(q-\zeta_{12}q^{3}-\zeta_{12}^{4}q^{5}+\zeta_{12}q^{7}+\zeta_{12}^{5}q^{11}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3104, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3104, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(388, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1552, [\chi])\)\(^{\oplus 2}\)