Properties

Label 312.4.m.a.181.11
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.11
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.48687 - 1.34740i) q^{2} +3.00000i q^{3} +(4.36905 + 6.70160i) q^{4} +8.37088 q^{5} +(4.04219 - 7.46061i) q^{6} -16.5971i q^{7} +(-1.83557 - 22.5528i) q^{8} -9.00000 q^{9} +(-20.8173 - 11.2789i) q^{10} -23.2256 q^{11} +(-20.1048 + 13.1072i) q^{12} +(-46.2169 + 7.80987i) q^{13} +(-22.3629 + 41.2748i) q^{14} +25.1126i q^{15} +(-25.8228 + 58.5592i) q^{16} -14.7565 q^{17} +(22.3818 + 12.1266i) q^{18} +124.395 q^{19} +(36.5728 + 56.0983i) q^{20} +49.7913 q^{21} +(57.7591 + 31.2941i) q^{22} -173.645 q^{23} +(67.6585 - 5.50670i) q^{24} -54.9283 q^{25} +(125.459 + 42.8503i) q^{26} -27.0000i q^{27} +(111.227 - 72.5136i) q^{28} -126.409i q^{29} +(33.8367 - 62.4519i) q^{30} +27.9669i q^{31} +(143.120 - 110.836i) q^{32} -69.6768i q^{33} +(36.6976 + 19.8829i) q^{34} -138.932i q^{35} +(-39.3215 - 60.3144i) q^{36} -362.661 q^{37} +(-309.355 - 167.610i) q^{38} +(-23.4296 - 138.651i) q^{39} +(-15.3653 - 188.787i) q^{40} -309.872i q^{41} +(-123.825 - 67.0886i) q^{42} +556.370i q^{43} +(-101.474 - 155.649i) q^{44} -75.3379 q^{45} +(431.834 + 233.969i) q^{46} +163.307i q^{47} +(-175.678 - 77.4683i) q^{48} +67.5362 q^{49} +(136.600 + 74.0102i) q^{50} -44.2696i q^{51} +(-254.263 - 275.606i) q^{52} -334.459i q^{53} +(-36.3797 + 67.1455i) q^{54} -194.419 q^{55} +(-374.312 + 30.4651i) q^{56} +373.186i q^{57} +(-170.323 + 314.363i) q^{58} -809.123 q^{59} +(-168.295 + 109.718i) q^{60} -6.20734i q^{61} +(37.6825 - 69.5500i) q^{62} +149.374i q^{63} +(-505.261 + 82.7945i) q^{64} +(-386.877 + 65.3755i) q^{65} +(-93.8822 + 173.277i) q^{66} -252.494 q^{67} +(-64.4721 - 98.8923i) q^{68} -520.936i q^{69} +(-187.197 + 345.507i) q^{70} -822.887i q^{71} +(16.5201 + 202.976i) q^{72} -449.440i q^{73} +(901.892 + 488.648i) q^{74} -164.785i q^{75} +(543.489 + 833.647i) q^{76} +385.478i q^{77} +(-128.551 + 376.376i) q^{78} -547.122 q^{79} +(-216.159 + 490.192i) q^{80} +81.0000 q^{81} +(-417.521 + 770.613i) q^{82} -959.070 q^{83} +(217.541 + 333.681i) q^{84} -123.525 q^{85} +(749.651 - 1383.62i) q^{86} +379.227 q^{87} +(42.6322 + 523.803i) q^{88} -656.191i q^{89} +(187.356 + 101.510i) q^{90} +(129.621 + 767.067i) q^{91} +(-758.666 - 1163.70i) q^{92} -83.9007 q^{93} +(220.039 - 406.123i) q^{94} +1041.30 q^{95} +(332.507 + 429.361i) q^{96} -417.791i q^{97} +(-167.954 - 90.9980i) q^{98} +209.030 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.48687 1.34740i −0.879242 0.476376i
\(3\) 3.00000i 0.577350i
\(4\) 4.36905 + 6.70160i 0.546131 + 0.837699i
\(5\) 8.37088 0.748714 0.374357 0.927285i \(-0.377863\pi\)
0.374357 + 0.927285i \(0.377863\pi\)
\(6\) 4.04219 7.46061i 0.275036 0.507630i
\(7\) 16.5971i 0.896159i −0.893994 0.448080i \(-0.852108\pi\)
0.893994 0.448080i \(-0.147892\pi\)
\(8\) −1.83557 22.5528i −0.0811214 0.996704i
\(9\) −9.00000 −0.333333
\(10\) −20.8173 11.2789i −0.658301 0.356670i
\(11\) −23.2256 −0.636616 −0.318308 0.947987i \(-0.603115\pi\)
−0.318308 + 0.947987i \(0.603115\pi\)
\(12\) −20.1048 + 13.1072i −0.483646 + 0.315309i
\(13\) −46.2169 + 7.80987i −0.986021 + 0.166621i
\(14\) −22.3629 + 41.2748i −0.426909 + 0.787940i
\(15\) 25.1126i 0.432270i
\(16\) −25.8228 + 58.5592i −0.403481 + 0.914988i
\(17\) −14.7565 −0.210529 −0.105264 0.994444i \(-0.533569\pi\)
−0.105264 + 0.994444i \(0.533569\pi\)
\(18\) 22.3818 + 12.1266i 0.293081 + 0.158792i
\(19\) 124.395 1.50201 0.751006 0.660295i \(-0.229569\pi\)
0.751006 + 0.660295i \(0.229569\pi\)
\(20\) 36.5728 + 56.0983i 0.408896 + 0.627198i
\(21\) 49.7913 0.517398
\(22\) 57.7591 + 31.2941i 0.559740 + 0.303269i
\(23\) −173.645 −1.57424 −0.787121 0.616798i \(-0.788429\pi\)
−0.787121 + 0.616798i \(0.788429\pi\)
\(24\) 67.6585 5.50670i 0.575447 0.0468355i
\(25\) −54.9283 −0.439427
\(26\) 125.459 + 42.8503i 0.946325 + 0.323217i
\(27\) 27.0000i 0.192450i
\(28\) 111.227 72.5136i 0.750712 0.489421i
\(29\) 126.409i 0.809433i −0.914442 0.404716i \(-0.867370\pi\)
0.914442 0.404716i \(-0.132630\pi\)
\(30\) 33.8367 62.4519i 0.205923 0.380070i
\(31\) 27.9669i 0.162032i 0.996713 + 0.0810162i \(0.0258165\pi\)
−0.996713 + 0.0810162i \(0.974183\pi\)
\(32\) 143.120 110.836i 0.790636 0.612287i
\(33\) 69.6768i 0.367551i
\(34\) 36.6976 + 19.8829i 0.185105 + 0.100291i
\(35\) 138.932i 0.670967i
\(36\) −39.3215 60.3144i −0.182044 0.279233i
\(37\) −362.661 −1.61138 −0.805692 0.592335i \(-0.798206\pi\)
−0.805692 + 0.592335i \(0.798206\pi\)
\(38\) −309.355 167.610i −1.32063 0.715523i
\(39\) −23.4296 138.651i −0.0961985 0.569280i
\(40\) −15.3653 188.787i −0.0607368 0.746247i
\(41\) 309.872i 1.18034i −0.807279 0.590170i \(-0.799061\pi\)
0.807279 0.590170i \(-0.200939\pi\)
\(42\) −123.825 67.0886i −0.454918 0.246476i
\(43\) 556.370i 1.97316i 0.163293 + 0.986578i \(0.447788\pi\)
−0.163293 + 0.986578i \(0.552212\pi\)
\(44\) −101.474 155.649i −0.347676 0.533293i
\(45\) −75.3379 −0.249571
\(46\) 431.834 + 233.969i 1.38414 + 0.749932i
\(47\) 163.307i 0.506825i 0.967358 + 0.253412i \(0.0815530\pi\)
−0.967358 + 0.253412i \(0.918447\pi\)
\(48\) −175.678 77.4683i −0.528269 0.232950i
\(49\) 67.5362 0.196899
\(50\) 136.600 + 74.0102i 0.386362 + 0.209332i
\(51\) 44.2696i 0.121549i
\(52\) −254.263 275.606i −0.678075 0.734993i
\(53\) 334.459i 0.866821i −0.901197 0.433411i \(-0.857310\pi\)
0.901197 0.433411i \(-0.142690\pi\)
\(54\) −36.3797 + 67.1455i −0.0916786 + 0.169210i
\(55\) −194.419 −0.476644
\(56\) −374.312 + 30.4651i −0.893206 + 0.0726977i
\(57\) 373.186i 0.867187i
\(58\) −170.323 + 314.363i −0.385595 + 0.711687i
\(59\) −809.123 −1.78540 −0.892702 0.450647i \(-0.851193\pi\)
−0.892702 + 0.450647i \(0.851193\pi\)
\(60\) −168.295 + 109.718i −0.362113 + 0.236077i
\(61\) 6.20734i 0.0130290i −0.999979 0.00651450i \(-0.997926\pi\)
0.999979 0.00651450i \(-0.00207364\pi\)
\(62\) 37.6825 69.5500i 0.0771883 0.142466i
\(63\) 149.374i 0.298720i
\(64\) −505.261 + 82.7945i −0.986839 + 0.161708i
\(65\) −386.877 + 65.3755i −0.738248 + 0.124751i
\(66\) −93.8822 + 173.277i −0.175092 + 0.323166i
\(67\) −252.494 −0.460403 −0.230202 0.973143i \(-0.573939\pi\)
−0.230202 + 0.973143i \(0.573939\pi\)
\(68\) −64.4721 98.8923i −0.114976 0.176360i
\(69\) 520.936i 0.908889i
\(70\) −187.197 + 345.507i −0.319633 + 0.589942i
\(71\) 822.887i 1.37548i −0.725959 0.687738i \(-0.758604\pi\)
0.725959 0.687738i \(-0.241396\pi\)
\(72\) 16.5201 + 202.976i 0.0270405 + 0.332235i
\(73\) 449.440i 0.720589i −0.932839 0.360294i \(-0.882676\pi\)
0.932839 0.360294i \(-0.117324\pi\)
\(74\) 901.892 + 488.648i 1.41679 + 0.767624i
\(75\) 164.785i 0.253703i
\(76\) 543.489 + 833.647i 0.820296 + 1.25823i
\(77\) 385.478i 0.570510i
\(78\) −128.551 + 376.376i −0.186609 + 0.546361i
\(79\) −547.122 −0.779191 −0.389595 0.920986i \(-0.627385\pi\)
−0.389595 + 0.920986i \(0.627385\pi\)
\(80\) −216.159 + 490.192i −0.302092 + 0.685065i
\(81\) 81.0000 0.111111
\(82\) −417.521 + 770.613i −0.562286 + 1.03780i
\(83\) −959.070 −1.26833 −0.634166 0.773197i \(-0.718656\pi\)
−0.634166 + 0.773197i \(0.718656\pi\)
\(84\) 217.541 + 333.681i 0.282567 + 0.433424i
\(85\) −123.525 −0.157626
\(86\) 749.651 1383.62i 0.939964 1.73488i
\(87\) 379.227 0.467326
\(88\) 42.6322 + 523.803i 0.0516432 + 0.634518i
\(89\) 656.191i 0.781529i −0.920491 0.390765i \(-0.872211\pi\)
0.920491 0.390765i \(-0.127789\pi\)
\(90\) 187.356 + 101.510i 0.219434 + 0.118890i
\(91\) 129.621 + 767.067i 0.149319 + 0.883632i
\(92\) −758.666 1163.70i −0.859743 1.31874i
\(93\) −83.9007 −0.0935494
\(94\) 220.039 406.123i 0.241439 0.445621i
\(95\) 1041.30 1.12458
\(96\) 332.507 + 429.361i 0.353504 + 0.456474i
\(97\) 417.791i 0.437322i −0.975801 0.218661i \(-0.929831\pi\)
0.975801 0.218661i \(-0.0701689\pi\)
\(98\) −167.954 90.9980i −0.173121 0.0937978i
\(99\) 209.030 0.212205
\(100\) −239.985 368.108i −0.239985 0.368108i
\(101\) 1487.66i 1.46562i −0.680432 0.732811i \(-0.738208\pi\)
0.680432 0.732811i \(-0.261792\pi\)
\(102\) −59.6487 + 110.093i −0.0579029 + 0.106871i
\(103\) −220.278 −0.210724 −0.105362 0.994434i \(-0.533600\pi\)
−0.105362 + 0.994434i \(0.533600\pi\)
\(104\) 260.969 + 1027.99i 0.246059 + 0.969255i
\(105\) 416.797 0.387383
\(106\) −450.649 + 831.757i −0.412933 + 0.762145i
\(107\) 871.468i 0.787365i 0.919247 + 0.393682i \(0.128799\pi\)
−0.919247 + 0.393682i \(0.871201\pi\)
\(108\) 180.943 117.964i 0.161215 0.105103i
\(109\) 152.585 0.134082 0.0670411 0.997750i \(-0.478644\pi\)
0.0670411 + 0.997750i \(0.478644\pi\)
\(110\) 483.494 + 261.959i 0.419085 + 0.227062i
\(111\) 1087.98i 0.930332i
\(112\) 971.914 + 428.583i 0.819975 + 0.361583i
\(113\) 1053.23 0.876810 0.438405 0.898778i \(-0.355544\pi\)
0.438405 + 0.898778i \(0.355544\pi\)
\(114\) 502.829 928.065i 0.413107 0.762467i
\(115\) −1453.57 −1.17866
\(116\) 847.142 552.287i 0.678061 0.442057i
\(117\) 415.952 70.2889i 0.328674 0.0555402i
\(118\) 2012.18 + 1090.21i 1.56980 + 0.850524i
\(119\) 244.916i 0.188667i
\(120\) 566.362 46.0960i 0.430846 0.0350664i
\(121\) −791.572 −0.594720
\(122\) −8.36374 + 15.4369i −0.00620670 + 0.0114556i
\(123\) 929.617 0.681470
\(124\) −187.423 + 122.189i −0.135734 + 0.0884910i
\(125\) −1506.16 −1.07772
\(126\) 201.266 371.474i 0.142303 0.262647i
\(127\) 2021.53 1.41245 0.706226 0.707987i \(-0.250396\pi\)
0.706226 + 0.707987i \(0.250396\pi\)
\(128\) 1368.08 + 474.887i 0.944703 + 0.327926i
\(129\) −1669.11 −1.13920
\(130\) 1050.20 + 358.695i 0.708527 + 0.241997i
\(131\) 1126.13i 0.751073i −0.926808 0.375537i \(-0.877458\pi\)
0.926808 0.375537i \(-0.122542\pi\)
\(132\) 466.946 304.422i 0.307897 0.200731i
\(133\) 2064.60i 1.34604i
\(134\) 627.919 + 340.209i 0.404806 + 0.219325i
\(135\) 226.014i 0.144090i
\(136\) 27.0866 + 332.802i 0.0170784 + 0.209835i
\(137\) 882.672i 0.550451i 0.961380 + 0.275225i \(0.0887525\pi\)
−0.961380 + 0.275225i \(0.911248\pi\)
\(138\) −701.907 + 1295.50i −0.432973 + 0.799133i
\(139\) 2278.54i 1.39039i 0.718823 + 0.695193i \(0.244681\pi\)
−0.718823 + 0.695193i \(0.755319\pi\)
\(140\) 931.069 607.003i 0.562069 0.366436i
\(141\) −489.921 −0.292615
\(142\) −1108.75 + 2046.41i −0.655244 + 1.20938i
\(143\) 1073.42 181.389i 0.627717 0.106073i
\(144\) 232.405 527.033i 0.134494 0.304996i
\(145\) 1058.15i 0.606034i
\(146\) −605.573 + 1117.70i −0.343271 + 0.633571i
\(147\) 202.609i 0.113679i
\(148\) −1584.49 2430.41i −0.880027 1.34985i
\(149\) 1732.23 0.952413 0.476207 0.879333i \(-0.342011\pi\)
0.476207 + 0.879333i \(0.342011\pi\)
\(150\) −222.031 + 409.799i −0.120858 + 0.223066i
\(151\) 2401.99i 1.29451i −0.762274 0.647255i \(-0.775917\pi\)
0.762274 0.647255i \(-0.224083\pi\)
\(152\) −228.336 2805.47i −0.121845 1.49706i
\(153\) 132.809 0.0701762
\(154\) 519.391 958.633i 0.271777 0.501616i
\(155\) 234.108i 0.121316i
\(156\) 826.817 762.789i 0.424348 0.391487i
\(157\) 3021.09i 1.53573i 0.640612 + 0.767865i \(0.278681\pi\)
−0.640612 + 0.767865i \(0.721319\pi\)
\(158\) 1360.62 + 737.190i 0.685097 + 0.371188i
\(159\) 1003.38 0.500460
\(160\) 1198.04 927.793i 0.591960 0.458428i
\(161\) 2882.01i 1.41077i
\(162\) −201.437 109.139i −0.0976935 0.0529307i
\(163\) 1603.60 0.770577 0.385288 0.922796i \(-0.374102\pi\)
0.385288 + 0.922796i \(0.374102\pi\)
\(164\) 2076.64 1353.85i 0.988770 0.644621i
\(165\) 583.256i 0.275190i
\(166\) 2385.08 + 1292.25i 1.11517 + 0.604203i
\(167\) 3215.29i 1.48986i 0.667143 + 0.744930i \(0.267517\pi\)
−0.667143 + 0.744930i \(0.732483\pi\)
\(168\) −91.3953 1122.94i −0.0419720 0.515693i
\(169\) 2075.01 721.897i 0.944475 0.328583i
\(170\) 307.191 + 166.437i 0.138591 + 0.0750892i
\(171\) −1119.56 −0.500671
\(172\) −3728.57 + 2430.81i −1.65291 + 1.07760i
\(173\) 2437.42i 1.07118i −0.844479 0.535589i \(-0.820090\pi\)
0.844479 0.535589i \(-0.179910\pi\)
\(174\) −943.088 510.968i −0.410893 0.222623i
\(175\) 911.651i 0.393796i
\(176\) 599.749 1360.07i 0.256863 0.582496i
\(177\) 2427.37i 1.03080i
\(178\) −884.148 + 1631.86i −0.372302 + 0.687153i
\(179\) 3033.74i 1.26677i 0.773835 + 0.633387i \(0.218336\pi\)
−0.773835 + 0.633387i \(0.781664\pi\)
\(180\) −329.155 504.884i −0.136299 0.209066i
\(181\) 1824.97i 0.749442i −0.927138 0.374721i \(-0.877738\pi\)
0.927138 0.374721i \(-0.122262\pi\)
\(182\) 711.192 2082.25i 0.289654 0.848058i
\(183\) 18.6220 0.00752229
\(184\) 318.738 + 3916.20i 0.127705 + 1.56905i
\(185\) −3035.80 −1.20647
\(186\) 208.650 + 113.047i 0.0822525 + 0.0445647i
\(187\) 342.729 0.134026
\(188\) −1094.42 + 713.496i −0.424567 + 0.276793i
\(189\) −448.122 −0.172466
\(190\) −2589.57 1403.04i −0.988776 0.535722i
\(191\) 2060.69 0.780662 0.390331 0.920675i \(-0.372361\pi\)
0.390331 + 0.920675i \(0.372361\pi\)
\(192\) −248.384 1515.78i −0.0933622 0.569752i
\(193\) 2776.88i 1.03567i 0.855480 + 0.517835i \(0.173262\pi\)
−0.855480 + 0.517835i \(0.826738\pi\)
\(194\) −562.930 + 1038.99i −0.208330 + 0.384512i
\(195\) −196.127 1160.63i −0.0720252 0.426228i
\(196\) 295.069 + 452.600i 0.107532 + 0.164942i
\(197\) −2780.38 −1.00555 −0.502776 0.864417i \(-0.667688\pi\)
−0.502776 + 0.864417i \(0.667688\pi\)
\(198\) −519.832 281.647i −0.186580 0.101090i
\(199\) 3560.57 1.26835 0.634175 0.773189i \(-0.281340\pi\)
0.634175 + 0.773189i \(0.281340\pi\)
\(200\) 100.825 + 1238.79i 0.0356469 + 0.437979i
\(201\) 757.481i 0.265814i
\(202\) −2004.47 + 3699.62i −0.698187 + 1.28864i
\(203\) −2098.02 −0.725381
\(204\) 296.677 193.416i 0.101821 0.0663816i
\(205\) 2593.91i 0.883738i
\(206\) 547.802 + 296.801i 0.185278 + 0.100384i
\(207\) 1562.81 0.524748
\(208\) 736.109 2908.10i 0.245385 0.969426i
\(209\) −2889.15 −0.956205
\(210\) −1036.52 561.590i −0.340603 0.184540i
\(211\) 3569.23i 1.16453i 0.812999 + 0.582265i \(0.197833\pi\)
−0.812999 + 0.582265i \(0.802167\pi\)
\(212\) 2241.41 1461.27i 0.726136 0.473398i
\(213\) 2468.66 0.794131
\(214\) 1174.21 2167.23i 0.375082 0.692284i
\(215\) 4657.31i 1.47733i
\(216\) −608.927 + 49.5603i −0.191816 + 0.0156118i
\(217\) 464.169 0.145207
\(218\) −379.458 205.592i −0.117891 0.0638735i
\(219\) 1348.32 0.416032
\(220\) −849.425 1302.92i −0.260310 0.399284i
\(221\) 682.002 115.247i 0.207586 0.0350784i
\(222\) −1465.94 + 2705.68i −0.443188 + 0.817987i
\(223\) 1406.96i 0.422498i −0.977432 0.211249i \(-0.932247\pi\)
0.977432 0.211249i \(-0.0677531\pi\)
\(224\) −1839.55 2375.38i −0.548707 0.708535i
\(225\) 494.355 0.146476
\(226\) −2619.24 1419.12i −0.770927 0.417691i
\(227\) −70.1646 −0.0205154 −0.0102577 0.999947i \(-0.503265\pi\)
−0.0102577 + 0.999947i \(0.503265\pi\)
\(228\) −2500.94 + 1630.47i −0.726442 + 0.473598i
\(229\) −837.989 −0.241816 −0.120908 0.992664i \(-0.538581\pi\)
−0.120908 + 0.992664i \(0.538581\pi\)
\(230\) 3614.83 + 1958.53i 1.03633 + 0.561485i
\(231\) −1156.43 −0.329384
\(232\) −2850.88 + 232.032i −0.806765 + 0.0656623i
\(233\) −6308.04 −1.77362 −0.886809 0.462136i \(-0.847083\pi\)
−0.886809 + 0.462136i \(0.847083\pi\)
\(234\) −1129.13 385.653i −0.315442 0.107739i
\(235\) 1367.02i 0.379467i
\(236\) −3535.10 5422.42i −0.975065 1.49563i
\(237\) 1641.37i 0.449866i
\(238\) 329.998 609.074i 0.0898765 0.165884i
\(239\) 5112.79i 1.38376i 0.722012 + 0.691880i \(0.243217\pi\)
−0.722012 + 0.691880i \(0.756783\pi\)
\(240\) −1470.58 648.478i −0.395522 0.174413i
\(241\) 276.608i 0.0739330i 0.999317 + 0.0369665i \(0.0117695\pi\)
−0.999317 + 0.0369665i \(0.988231\pi\)
\(242\) 1968.54 + 1066.56i 0.522902 + 0.283310i
\(243\) 243.000i 0.0641500i
\(244\) 41.5991 27.1202i 0.0109144 0.00711554i
\(245\) 565.338 0.147421
\(246\) −2311.84 1252.56i −0.599176 0.324636i
\(247\) −5749.17 + 971.511i −1.48102 + 0.250266i
\(248\) 630.733 51.3351i 0.161498 0.0131443i
\(249\) 2877.21i 0.732272i
\(250\) 3745.62 + 2029.39i 0.947576 + 0.513400i
\(251\) 3768.11i 0.947574i −0.880640 0.473787i \(-0.842887\pi\)
0.880640 0.473787i \(-0.157113\pi\)
\(252\) −1001.04 + 652.622i −0.250237 + 0.163140i
\(253\) 4033.02 1.00219
\(254\) −5027.27 2723.79i −1.24189 0.672858i
\(255\) 370.576i 0.0910053i
\(256\) −2762.37 3024.32i −0.674406 0.738360i
\(257\) 1835.81 0.445583 0.222792 0.974866i \(-0.428483\pi\)
0.222792 + 0.974866i \(0.428483\pi\)
\(258\) 4150.86 + 2248.95i 1.00163 + 0.542689i
\(259\) 6019.13i 1.44406i
\(260\) −2128.40 2307.06i −0.507685 0.550299i
\(261\) 1137.68i 0.269811i
\(262\) −1517.34 + 2800.54i −0.357793 + 0.660375i
\(263\) −2858.96 −0.670308 −0.335154 0.942163i \(-0.608788\pi\)
−0.335154 + 0.942163i \(0.608788\pi\)
\(264\) −1571.41 + 127.896i −0.366339 + 0.0298162i
\(265\) 2799.72i 0.649002i
\(266\) −2781.83 + 5134.39i −0.641222 + 1.18350i
\(267\) 1968.57 0.451216
\(268\) −1103.16 1692.11i −0.251441 0.385679i
\(269\) 1513.76i 0.343106i −0.985175 0.171553i \(-0.945122\pi\)
0.985175 0.171553i \(-0.0548784\pi\)
\(270\) −304.530 + 562.067i −0.0686411 + 0.126690i
\(271\) 3396.37i 0.761310i −0.924717 0.380655i \(-0.875699\pi\)
0.924717 0.380655i \(-0.124301\pi\)
\(272\) 381.055 864.132i 0.0849443 0.192631i
\(273\) −2301.20 + 388.864i −0.510165 + 0.0862092i
\(274\) 1189.31 2195.09i 0.262222 0.483979i
\(275\) 1275.74 0.279746
\(276\) 3491.10 2276.00i 0.761376 0.496373i
\(277\) 1744.88i 0.378482i −0.981931 0.189241i \(-0.939397\pi\)
0.981931 0.189241i \(-0.0606027\pi\)
\(278\) 3070.10 5666.44i 0.662346 1.22248i
\(279\) 251.702i 0.0540108i
\(280\) −3133.32 + 255.020i −0.668756 + 0.0544298i
\(281\) 3474.67i 0.737657i 0.929498 + 0.368828i \(0.120241\pi\)
−0.929498 + 0.368828i \(0.879759\pi\)
\(282\) 1218.37 + 660.117i 0.257280 + 0.139395i
\(283\) 1706.09i 0.358363i −0.983816 0.179181i \(-0.942655\pi\)
0.983816 0.179181i \(-0.0573449\pi\)
\(284\) 5514.66 3595.24i 1.15223 0.751190i
\(285\) 3123.89i 0.649275i
\(286\) −2913.85 995.225i −0.602446 0.205765i
\(287\) −5142.98 −1.05777
\(288\) −1288.08 + 997.522i −0.263545 + 0.204096i
\(289\) −4695.24 −0.955678
\(290\) −1425.75 + 2631.49i −0.288700 + 0.532850i
\(291\) 1253.37 0.252488
\(292\) 3011.96 1963.63i 0.603637 0.393536i
\(293\) 3584.54 0.714714 0.357357 0.933968i \(-0.383678\pi\)
0.357357 + 0.933968i \(0.383678\pi\)
\(294\) 272.994 503.861i 0.0541542 0.0999517i
\(295\) −6773.07 −1.33676
\(296\) 665.690 + 8179.05i 0.130718 + 1.60607i
\(297\) 627.091i 0.122517i
\(298\) −4307.83 2333.99i −0.837401 0.453707i
\(299\) 8025.36 1356.15i 1.55224 0.262301i
\(300\) 1104.32 719.954i 0.212527 0.138555i
\(301\) 9234.13 1.76826
\(302\) −3236.43 + 5973.43i −0.616674 + 1.13819i
\(303\) 4462.98 0.846177
\(304\) −3212.23 + 7284.49i −0.606033 + 1.37432i
\(305\) 51.9609i 0.00975499i
\(306\) −330.278 178.946i −0.0617018 0.0334303i
\(307\) −4601.91 −0.855520 −0.427760 0.903892i \(-0.640697\pi\)
−0.427760 + 0.903892i \(0.640697\pi\)
\(308\) −2583.32 + 1684.17i −0.477916 + 0.311573i
\(309\) 660.833i 0.121662i
\(310\) 315.435 582.195i 0.0577920 0.106666i
\(311\) 9575.88 1.74597 0.872987 0.487743i \(-0.162180\pi\)
0.872987 + 0.487743i \(0.162180\pi\)
\(312\) −3083.96 + 782.908i −0.559600 + 0.142062i
\(313\) −640.816 −0.115722 −0.0578611 0.998325i \(-0.518428\pi\)
−0.0578611 + 0.998325i \(0.518428\pi\)
\(314\) 4070.61 7513.07i 0.731585 1.35028i
\(315\) 1250.39i 0.223656i
\(316\) −2390.41 3666.59i −0.425541 0.652728i
\(317\) −3844.07 −0.681086 −0.340543 0.940229i \(-0.610611\pi\)
−0.340543 + 0.940229i \(0.610611\pi\)
\(318\) −2495.27 1351.95i −0.440025 0.238407i
\(319\) 2935.92i 0.515298i
\(320\) −4229.48 + 693.063i −0.738860 + 0.121073i
\(321\) −2614.41 −0.454585
\(322\) 3883.21 7167.19i 0.672058 1.24041i
\(323\) −1835.64 −0.316216
\(324\) 353.893 + 542.829i 0.0606813 + 0.0930777i
\(325\) 2538.62 428.983i 0.433284 0.0732176i
\(326\) −3987.96 2160.69i −0.677523 0.367084i
\(327\) 457.754i 0.0774124i
\(328\) −6988.50 + 568.792i −1.17645 + 0.0957508i
\(329\) 2710.42 0.454196
\(330\) −785.877 + 1450.48i −0.131094 + 0.241959i
\(331\) 9122.40 1.51484 0.757421 0.652927i \(-0.226459\pi\)
0.757421 + 0.652927i \(0.226459\pi\)
\(332\) −4190.22 6427.30i −0.692676 1.06248i
\(333\) 3263.95 0.537128
\(334\) 4332.26 7996.01i 0.709733 1.30995i
\(335\) −2113.59 −0.344710
\(336\) −1285.75 + 2915.74i −0.208760 + 0.473413i
\(337\) 5151.68 0.832730 0.416365 0.909198i \(-0.363304\pi\)
0.416365 + 0.909198i \(0.363304\pi\)
\(338\) −6132.97 1000.60i −0.986951 0.161022i
\(339\) 3159.69i 0.506226i
\(340\) −539.688 827.816i −0.0860844 0.132043i
\(341\) 649.548i 0.103152i
\(342\) 2784.19 + 1508.49i 0.440210 + 0.238508i
\(343\) 6813.71i 1.07261i
\(344\) 12547.7 1021.26i 1.96665 0.160065i
\(345\) 4360.70i 0.680499i
\(346\) −3284.17 + 6061.55i −0.510284 + 0.941824i
\(347\) 11604.4i 1.79527i 0.440742 + 0.897634i \(0.354716\pi\)
−0.440742 + 0.897634i \(0.645284\pi\)
\(348\) 1656.86 + 2541.42i 0.255222 + 0.391479i
\(349\) 2017.61 0.309456 0.154728 0.987957i \(-0.450550\pi\)
0.154728 + 0.987957i \(0.450550\pi\)
\(350\) 1228.35 2267.16i 0.187595 0.346242i
\(351\) 210.867 + 1247.86i 0.0320662 + 0.189760i
\(352\) −3324.06 + 2574.23i −0.503332 + 0.389792i
\(353\) 6809.89i 1.02678i 0.858155 + 0.513391i \(0.171611\pi\)
−0.858155 + 0.513391i \(0.828389\pi\)
\(354\) −3270.63 + 6036.55i −0.491050 + 0.906325i
\(355\) 6888.29i 1.02984i
\(356\) 4397.53 2866.93i 0.654686 0.426818i
\(357\) −734.747 −0.108927
\(358\) 4087.65 7544.53i 0.603461 1.11380i
\(359\) 4459.33i 0.655584i −0.944750 0.327792i \(-0.893696\pi\)
0.944750 0.327792i \(-0.106304\pi\)
\(360\) 138.288 + 1699.08i 0.0202456 + 0.248749i
\(361\) 8615.18 1.25604
\(362\) −2458.96 + 4538.47i −0.357016 + 0.658941i
\(363\) 2374.71i 0.343361i
\(364\) −4574.25 + 4220.03i −0.658670 + 0.607663i
\(365\) 3762.21i 0.539515i
\(366\) −46.3106 25.0912i −0.00661391 0.00358344i
\(367\) −4612.98 −0.656118 −0.328059 0.944657i \(-0.606395\pi\)
−0.328059 + 0.944657i \(0.606395\pi\)
\(368\) 4484.01 10168.5i 0.635177 1.44041i
\(369\) 2788.85i 0.393447i
\(370\) 7549.63 + 4090.42i 1.06077 + 0.574732i
\(371\) −5551.06 −0.776810
\(372\) −366.566 562.268i −0.0510903 0.0783663i
\(373\) 11536.7i 1.60147i −0.599018 0.800735i \(-0.704442\pi\)
0.599018 0.800735i \(-0.295558\pi\)
\(374\) −852.324 461.792i −0.117841 0.0638468i
\(375\) 4518.48i 0.622222i
\(376\) 3683.04 299.761i 0.505154 0.0411143i
\(377\) 987.238 + 5842.24i 0.134868 + 0.798118i
\(378\) 1114.42 + 603.797i 0.151639 + 0.0821587i
\(379\) 3947.90 0.535066 0.267533 0.963549i \(-0.413792\pi\)
0.267533 + 0.963549i \(0.413792\pi\)
\(380\) 4549.48 + 6978.36i 0.614167 + 0.942058i
\(381\) 6064.58i 0.815479i
\(382\) −5124.67 2776.57i −0.686390 0.371889i
\(383\) 1328.83i 0.177285i −0.996064 0.0886425i \(-0.971747\pi\)
0.996064 0.0886425i \(-0.0282529\pi\)
\(384\) −1424.66 + 4104.23i −0.189328 + 0.545425i
\(385\) 3226.79i 0.427149i
\(386\) 3741.56 6905.75i 0.493369 0.910605i
\(387\) 5007.33i 0.657718i
\(388\) 2799.87 1825.35i 0.366344 0.238835i
\(389\) 8622.02i 1.12379i 0.827209 + 0.561894i \(0.189927\pi\)
−0.827209 + 0.561894i \(0.810073\pi\)
\(390\) −1076.09 + 3150.60i −0.139717 + 0.409068i
\(391\) 2562.41 0.331423
\(392\) −123.967 1523.13i −0.0159727 0.196250i
\(393\) 3378.39 0.433632
\(394\) 6914.43 + 3746.27i 0.884122 + 0.479021i
\(395\) −4579.90 −0.583391
\(396\) 913.265 + 1400.84i 0.115892 + 0.177764i
\(397\) −12450.9 −1.57403 −0.787017 0.616931i \(-0.788376\pi\)
−0.787017 + 0.616931i \(0.788376\pi\)
\(398\) −8854.67 4797.49i −1.11519 0.604212i
\(399\) 6193.80 0.777138
\(400\) 1418.40 3216.56i 0.177300 0.402070i
\(401\) 2689.39i 0.334917i 0.985879 + 0.167458i \(0.0535560\pi\)
−0.985879 + 0.167458i \(0.946444\pi\)
\(402\) −1020.63 + 1883.76i −0.126627 + 0.233715i
\(403\) −218.418 1292.54i −0.0269979 0.159767i
\(404\) 9969.70 6499.67i 1.22775 0.800422i
\(405\) 678.041 0.0831905
\(406\) 5217.51 + 2826.87i 0.637785 + 0.345554i
\(407\) 8423.03 1.02583
\(408\) −998.406 + 81.2599i −0.121148 + 0.00986020i
\(409\) 9558.37i 1.15558i 0.816186 + 0.577789i \(0.196084\pi\)
−0.816186 + 0.577789i \(0.803916\pi\)
\(410\) −3495.02 + 6450.71i −0.420992 + 0.777019i
\(411\) −2648.02 −0.317803
\(412\) −962.405 1476.21i −0.115083 0.176524i
\(413\) 13429.1i 1.60001i
\(414\) −3886.50 2105.72i −0.461380 0.249977i
\(415\) −8028.26 −0.949619
\(416\) −5748.97 + 6240.24i −0.677564 + 0.735464i
\(417\) −6835.63 −0.802739
\(418\) 7184.95 + 3892.83i 0.840736 + 0.455514i
\(419\) 2835.98i 0.330660i −0.986238 0.165330i \(-0.947131\pi\)
0.986238 0.165330i \(-0.0528689\pi\)
\(420\) 1821.01 + 2793.21i 0.211562 + 0.324511i
\(421\) 6691.51 0.774642 0.387321 0.921945i \(-0.373400\pi\)
0.387321 + 0.921945i \(0.373400\pi\)
\(422\) 4809.16 8876.21i 0.554754 1.02390i
\(423\) 1469.76i 0.168942i
\(424\) −7543.01 + 613.923i −0.863965 + 0.0703178i
\(425\) 810.552 0.0925119
\(426\) −6139.24 3326.26i −0.698233 0.378305i
\(427\) −103.024 −0.0116761
\(428\) −5840.23 + 3807.49i −0.659575 + 0.430005i
\(429\) 544.167 + 3220.25i 0.0612416 + 0.362413i
\(430\) 6275.24 11582.1i 0.703765 1.29893i
\(431\) 4507.64i 0.503771i 0.967757 + 0.251886i \(0.0810507\pi\)
−0.967757 + 0.251886i \(0.918949\pi\)
\(432\) 1581.10 + 697.215i 0.176090 + 0.0776499i
\(433\) 15177.6 1.68450 0.842248 0.539090i \(-0.181232\pi\)
0.842248 + 0.539090i \(0.181232\pi\)
\(434\) −1154.33 625.420i −0.127672 0.0691730i
\(435\) 3174.46 0.349894
\(436\) 666.650 + 1022.56i 0.0732265 + 0.112321i
\(437\) −21600.7 −2.36453
\(438\) −3353.10 1816.72i −0.365793 0.198188i
\(439\) −6916.43 −0.751943 −0.375972 0.926631i \(-0.622691\pi\)
−0.375972 + 0.926631i \(0.622691\pi\)
\(440\) 356.869 + 4384.69i 0.0386660 + 0.475073i
\(441\) −607.826 −0.0656328
\(442\) −1851.33 632.323i −0.199228 0.0680464i
\(443\) 935.734i 0.100357i −0.998740 0.0501784i \(-0.984021\pi\)
0.998740 0.0501784i \(-0.0159790\pi\)
\(444\) 7291.23 4753.46i 0.779339 0.508084i
\(445\) 5492.90i 0.585142i
\(446\) −1895.73 + 3498.93i −0.201268 + 0.371478i
\(447\) 5196.68i 0.549876i
\(448\) 1374.15 + 8385.87i 0.144916 + 0.884365i
\(449\) 3019.21i 0.317339i −0.987332 0.158669i \(-0.949280\pi\)
0.987332 0.158669i \(-0.0507204\pi\)
\(450\) −1229.40 666.092i −0.128787 0.0697775i
\(451\) 7196.97i 0.751424i
\(452\) 4601.61 + 7058.32i 0.478853 + 0.734503i
\(453\) 7205.96 0.747385
\(454\) 174.490 + 94.5395i 0.0180380 + 0.00977304i
\(455\) 1085.04 + 6421.03i 0.111797 + 0.661588i
\(456\) 8416.40 685.008i 0.864329 0.0703474i
\(457\) 13732.7i 1.40567i −0.711354 0.702834i \(-0.751918\pi\)
0.711354 0.702834i \(-0.248082\pi\)
\(458\) 2083.97 + 1129.10i 0.212615 + 0.115195i
\(459\) 398.427i 0.0405162i
\(460\) −6350.70 9741.21i −0.643702 0.987361i
\(461\) −9639.21 −0.973846 −0.486923 0.873445i \(-0.661881\pi\)
−0.486923 + 0.873445i \(0.661881\pi\)
\(462\) 2875.90 + 1558.17i 0.289608 + 0.156911i
\(463\) 6341.49i 0.636532i 0.948001 + 0.318266i \(0.103100\pi\)
−0.948001 + 0.318266i \(0.896900\pi\)
\(464\) 7402.41 + 3264.23i 0.740621 + 0.326591i
\(465\) −702.323 −0.0700418
\(466\) 15687.3 + 8499.42i 1.55944 + 0.844910i
\(467\) 5746.60i 0.569424i −0.958613 0.284712i \(-0.908102\pi\)
0.958613 0.284712i \(-0.0918980\pi\)
\(468\) 2288.37 + 2480.45i 0.226025 + 0.244998i
\(469\) 4190.66i 0.412595i
\(470\) 1841.92 3399.61i 0.180769 0.333643i
\(471\) −9063.28 −0.886654
\(472\) 1485.20 + 18248.0i 0.144834 + 1.77952i
\(473\) 12922.0i 1.25614i
\(474\) −2211.57 + 4081.87i −0.214305 + 0.395541i
\(475\) −6832.82 −0.660024
\(476\) −1641.33 + 1070.05i −0.158046 + 0.103037i
\(477\) 3010.13i 0.288940i
\(478\) 6888.95 12714.8i 0.659191 1.21666i
\(479\) 7754.98i 0.739737i −0.929084 0.369869i \(-0.879403\pi\)
0.929084 0.369869i \(-0.120597\pi\)
\(480\) 2783.38 + 3594.13i 0.264674 + 0.341768i
\(481\) 16761.1 2832.34i 1.58886 0.268490i
\(482\) 372.700 687.887i 0.0352199 0.0650050i
\(483\) −8646.03 −0.814510
\(484\) −3458.42 5304.79i −0.324795 0.498196i
\(485\) 3497.28i 0.327429i
\(486\) 327.417 604.310i 0.0305595 0.0564034i
\(487\) 10370.4i 0.964947i 0.875911 + 0.482474i \(0.160262\pi\)
−0.875911 + 0.482474i \(0.839738\pi\)
\(488\) −139.993 + 11.3940i −0.0129861 + 0.00105693i
\(489\) 4810.81i 0.444893i
\(490\) −1405.92 761.733i −0.129618 0.0702277i
\(491\) 18737.7i 1.72225i −0.508397 0.861123i \(-0.669762\pi\)
0.508397 0.861123i \(-0.330238\pi\)
\(492\) 4061.55 + 6229.92i 0.372172 + 0.570867i
\(493\) 1865.36i 0.170409i
\(494\) 15606.4 + 5330.38i 1.42139 + 0.485476i
\(495\) 1749.77 0.158881
\(496\) −1637.72 722.183i −0.148258 0.0653769i
\(497\) −13657.5 −1.23264
\(498\) −3876.74 + 7155.25i −0.348837 + 0.643844i
\(499\) −9332.52 −0.837236 −0.418618 0.908162i \(-0.637485\pi\)
−0.418618 + 0.908162i \(0.637485\pi\)
\(500\) −6580.49 10093.7i −0.588577 0.902805i
\(501\) −9645.86 −0.860171
\(502\) −5077.13 + 9370.80i −0.451402 + 0.833146i
\(503\) −85.6243 −0.00759006 −0.00379503 0.999993i \(-0.501208\pi\)
−0.00379503 + 0.999993i \(0.501208\pi\)
\(504\) 3368.81 274.186i 0.297735 0.0242326i
\(505\) 12453.0i 1.09733i
\(506\) −10029.6 5434.07i −0.881166 0.477419i
\(507\) 2165.69 + 6225.04i 0.189708 + 0.545293i
\(508\) 8832.15 + 13547.4i 0.771384 + 1.18321i
\(509\) 1278.96 0.111373 0.0556867 0.998448i \(-0.482265\pi\)
0.0556867 + 0.998448i \(0.482265\pi\)
\(510\) −499.312 + 921.574i −0.0433528 + 0.0800156i
\(511\) −7459.40 −0.645762
\(512\) 2794.69 + 11243.1i 0.241229 + 0.970468i
\(513\) 3358.67i 0.289062i
\(514\) −4565.43 2473.57i −0.391775 0.212265i
\(515\) −1843.92 −0.157772
\(516\) −7292.43 11185.7i −0.622154 0.954309i
\(517\) 3792.90i 0.322653i
\(518\) 8110.15 14968.8i 0.687914 1.26967i
\(519\) 7312.27 0.618445
\(520\) 2184.54 + 8605.16i 0.184228 + 0.725695i
\(521\) −1766.24 −0.148523 −0.0742616 0.997239i \(-0.523660\pi\)
−0.0742616 + 0.997239i \(0.523660\pi\)
\(522\) 1532.91 2829.26i 0.128532 0.237229i
\(523\) 15522.3i 1.29779i −0.760878 0.648894i \(-0.775232\pi\)
0.760878 0.648894i \(-0.224768\pi\)
\(524\) 7546.88 4920.13i 0.629174 0.410185i
\(525\) −2734.95 −0.227358
\(526\) 7109.86 + 3852.15i 0.589363 + 0.319319i
\(527\) 412.694i 0.0341124i
\(528\) 4080.22 + 1799.25i 0.336304 + 0.148300i
\(529\) 17985.7 1.47824
\(530\) −3772.33 + 6962.54i −0.309169 + 0.570629i
\(531\) 7282.11 0.595135
\(532\) 13836.1 9020.35i 1.12758 0.735116i
\(533\) 2420.06 + 14321.4i 0.196669 + 1.16384i
\(534\) −4895.59 2652.45i −0.396728 0.214949i
\(535\) 7294.96i 0.589511i
\(536\) 463.469 + 5694.45i 0.0373486 + 0.458886i
\(537\) −9101.23 −0.731373
\(538\) −2039.63 + 3764.52i −0.163447 + 0.301673i
\(539\) −1568.57 −0.125349
\(540\) 1514.65 987.466i 0.120704 0.0786922i
\(541\) −22081.4 −1.75481 −0.877407 0.479748i \(-0.840728\pi\)
−0.877407 + 0.479748i \(0.840728\pi\)
\(542\) −4576.26 + 8446.34i −0.362670 + 0.669375i
\(543\) 5474.91 0.432691
\(544\) −2111.96 + 1635.55i −0.166451 + 0.128904i
\(545\) 1277.27 0.100389
\(546\) 6246.75 + 2133.57i 0.489626 + 0.167232i
\(547\) 21980.9i 1.71817i −0.511837 0.859083i \(-0.671035\pi\)
0.511837 0.859083i \(-0.328965\pi\)
\(548\) −5915.31 + 3856.44i −0.461112 + 0.300618i
\(549\) 55.8661i 0.00434300i
\(550\) −3172.61 1718.93i −0.245965 0.133264i
\(551\) 15724.7i 1.21578i
\(552\) −11748.6 + 956.214i −0.905894 + 0.0737304i
\(553\) 9080.64i 0.698279i
\(554\) −2351.04 + 4339.28i −0.180300 + 0.332777i
\(555\) 9107.39i 0.696553i
\(556\) −15269.9 + 9955.08i −1.16473 + 0.759333i
\(557\) 23410.1 1.78082 0.890412 0.455156i \(-0.150416\pi\)
0.890412 + 0.455156i \(0.150416\pi\)
\(558\) −339.142 + 625.950i −0.0257294 + 0.0474885i
\(559\) −4345.18 25713.7i −0.328769 1.94557i
\(560\) 8135.77 + 3587.62i 0.613927 + 0.270722i
\(561\) 1028.19i 0.0773799i
\(562\) 4681.76 8641.06i 0.351402 0.648578i
\(563\) 11642.7i 0.871551i −0.900056 0.435775i \(-0.856474\pi\)
0.900056 0.435775i \(-0.143526\pi\)
\(564\) −2140.49 3283.25i −0.159806 0.245124i
\(565\) 8816.46 0.656480
\(566\) −2298.78 + 4242.83i −0.170715 + 0.315087i
\(567\) 1344.37i 0.0995733i
\(568\) −18558.4 + 1510.47i −1.37094 + 0.111580i
\(569\) 13777.7 1.01510 0.507548 0.861624i \(-0.330552\pi\)
0.507548 + 0.861624i \(0.330552\pi\)
\(570\) 4209.12 7768.72i 0.309299 0.570870i
\(571\) 9112.18i 0.667834i 0.942603 + 0.333917i \(0.108370\pi\)
−0.942603 + 0.333917i \(0.891630\pi\)
\(572\) 5905.41 + 6401.10i 0.431674 + 0.467908i
\(573\) 6182.08i 0.450715i
\(574\) 12789.9 + 6929.63i 0.930038 + 0.503898i
\(575\) 9538.06 0.691764
\(576\) 4547.35 745.151i 0.328946 0.0539027i
\(577\) 3992.15i 0.288033i 0.989575 + 0.144017i \(0.0460019\pi\)
−0.989575 + 0.144017i \(0.953998\pi\)
\(578\) 11676.5 + 6326.35i 0.840272 + 0.455262i
\(579\) −8330.65 −0.597945
\(580\) 7091.32 4623.13i 0.507674 0.330974i
\(581\) 15917.8i 1.13663i
\(582\) −3116.98 1688.79i −0.221998 0.120279i
\(583\) 7768.02i 0.551833i
\(584\) −10136.1 + 824.978i −0.718214 + 0.0584552i
\(585\) 3481.89 588.380i 0.246083 0.0415838i
\(586\) −8914.29 4829.79i −0.628406 0.340473i
\(587\) −4964.98 −0.349109 −0.174554 0.984648i \(-0.555848\pi\)
−0.174554 + 0.984648i \(0.555848\pi\)
\(588\) −1357.80 + 885.207i −0.0952292 + 0.0620839i
\(589\) 3478.95i 0.243374i
\(590\) 16843.8 + 9126.01i 1.17533 + 0.636800i
\(591\) 8341.13i 0.580555i
\(592\) 9364.92 21237.2i 0.650162 1.47440i
\(593\) 6012.41i 0.416357i −0.978091 0.208179i \(-0.933246\pi\)
0.978091 0.208179i \(-0.0667536\pi\)
\(594\) 844.940 1559.49i 0.0583641 0.107722i
\(595\) 2050.16i 0.141258i
\(596\) 7568.19 + 11608.7i 0.520143 + 0.797836i
\(597\) 10681.7i 0.732283i
\(598\) −21785.3 7440.77i −1.48974 0.508822i
\(599\) −5330.42 −0.363598 −0.181799 0.983336i \(-0.558192\pi\)
−0.181799 + 0.983336i \(0.558192\pi\)
\(600\) −3716.37 + 302.474i −0.252867 + 0.0205808i
\(601\) −4976.57 −0.337768 −0.168884 0.985636i \(-0.554016\pi\)
−0.168884 + 0.985636i \(0.554016\pi\)
\(602\) −22964.1 12442.0i −1.55473 0.842358i
\(603\) 2272.44 0.153468
\(604\) 16097.1 10494.4i 1.08441 0.706972i
\(605\) −6626.15 −0.445275
\(606\) −11098.9 6013.40i −0.743994 0.403099i
\(607\) −3168.09 −0.211843 −0.105922 0.994374i \(-0.533779\pi\)
−0.105922 + 0.994374i \(0.533779\pi\)
\(608\) 17803.5 13787.4i 1.18754 0.919662i
\(609\) 6294.07i 0.418799i
\(610\) −70.0119 + 129.220i −0.00464705 + 0.00857700i
\(611\) −1275.41 7547.55i −0.0844475 0.499740i
\(612\) 580.249 + 890.031i 0.0383254 + 0.0587866i
\(613\) −3807.27 −0.250855 −0.125428 0.992103i \(-0.540030\pi\)
−0.125428 + 0.992103i \(0.540030\pi\)
\(614\) 11444.3 + 6200.59i 0.752209 + 0.407549i
\(615\) 7781.72 0.510226
\(616\) 8693.62 707.570i 0.568629 0.0462806i
\(617\) 8976.23i 0.585688i −0.956160 0.292844i \(-0.905398\pi\)
0.956160 0.292844i \(-0.0946017\pi\)
\(618\) −890.404 + 1643.41i −0.0579568 + 0.106970i
\(619\) 1253.41 0.0813872 0.0406936 0.999172i \(-0.487043\pi\)
0.0406936 + 0.999172i \(0.487043\pi\)
\(620\) −1568.89 + 1022.83i −0.101626 + 0.0662544i
\(621\) 4688.43i 0.302963i
\(622\) −23814.0 12902.5i −1.53513 0.831741i
\(623\) −10890.9 −0.700375
\(624\) 8724.30 + 2208.33i 0.559698 + 0.141673i
\(625\) −5741.83 −0.367477
\(626\) 1593.63 + 863.432i 0.101748 + 0.0551273i
\(627\) 8667.46i 0.552065i
\(628\) −20246.2 + 13199.3i −1.28648 + 0.838710i
\(629\) 5351.63 0.339242
\(630\) 1684.77 3109.56i 0.106544 0.196647i
\(631\) 22115.1i 1.39523i −0.716474 0.697614i \(-0.754245\pi\)
0.716474 0.697614i \(-0.245755\pi\)
\(632\) 1004.28 + 12339.2i 0.0632090 + 0.776623i
\(633\) −10707.7 −0.672342
\(634\) 9559.69 + 5179.48i 0.598839 + 0.324453i
\(635\) 16921.9 1.05752
\(636\) 4383.81 + 6724.24i 0.273317 + 0.419235i
\(637\) −3121.32 + 527.449i −0.194146 + 0.0328074i
\(638\) 3955.85 7301.26i 0.245476 0.453072i
\(639\) 7405.98i 0.458492i
\(640\) 11452.0 + 3975.23i 0.707313 + 0.245523i
\(641\) −26606.7 −1.63947 −0.819736 0.572741i \(-0.805880\pi\)
−0.819736 + 0.572741i \(0.805880\pi\)
\(642\) 6501.69 + 3522.64i 0.399690 + 0.216554i
\(643\) 15622.5 0.958152 0.479076 0.877773i \(-0.340972\pi\)
0.479076 + 0.877773i \(0.340972\pi\)
\(644\) −19314.1 + 12591.7i −1.18180 + 0.770467i
\(645\) −13971.9 −0.852937
\(646\) 4565.01 + 2473.34i 0.278031 + 0.150638i
\(647\) −8706.60 −0.529045 −0.264522 0.964380i \(-0.585214\pi\)
−0.264522 + 0.964380i \(0.585214\pi\)
\(648\) −148.681 1826.78i −0.00901349 0.110745i
\(649\) 18792.4 1.13662
\(650\) −6891.23 2353.70i −0.415840 0.142030i
\(651\) 1392.51i 0.0838352i
\(652\) 7006.23 + 10746.7i 0.420836 + 0.645512i
\(653\) 3649.42i 0.218703i −0.994003 0.109351i \(-0.965123\pi\)
0.994003 0.109351i \(-0.0348773\pi\)
\(654\) 616.775 1138.37i 0.0368774 0.0680642i
\(655\) 9426.71i 0.562339i
\(656\) 18145.9 + 8001.76i 1.08000 + 0.476245i
\(657\) 4044.96i 0.240196i
\(658\) −6740.47 3652.01i −0.399348 0.216368i
\(659\) 17881.8i 1.05702i 0.848927 + 0.528510i \(0.177249\pi\)
−0.848927 + 0.528510i \(0.822751\pi\)
\(660\) 3908.75 2548.28i 0.230527 0.150290i
\(661\) −4411.35 −0.259579 −0.129789 0.991542i \(-0.541430\pi\)
−0.129789 + 0.991542i \(0.541430\pi\)
\(662\) −22686.2 12291.5i −1.33191 0.721634i
\(663\) 345.740 + 2046.01i 0.0202525 + 0.119850i
\(664\) 1760.44 + 21629.7i 0.102889 + 1.26415i
\(665\) 17282.5i 1.00780i
\(666\) −8117.03 4397.83i −0.472265 0.255875i
\(667\) 21950.3i 1.27424i
\(668\) −21547.6 + 14047.8i −1.24805 + 0.813659i
\(669\) 4220.88 0.243929
\(670\) 5256.24 + 2847.85i 0.303084 + 0.164212i
\(671\) 144.169i 0.00829447i
\(672\) 7126.15 5518.66i 0.409073 0.316796i
\(673\) −18882.8 −1.08154 −0.540771 0.841170i \(-0.681868\pi\)
−0.540771 + 0.841170i \(0.681868\pi\)
\(674\) −12811.6 6941.35i −0.732171 0.396693i
\(675\) 1483.07i 0.0845677i
\(676\) 13903.7 + 10751.9i 0.791061 + 0.611737i
\(677\) 8607.17i 0.488627i 0.969696 + 0.244313i \(0.0785625\pi\)
−0.969696 + 0.244313i \(0.921437\pi\)
\(678\) 4257.35 7857.73i 0.241154 0.445095i
\(679\) −6934.12 −0.391910
\(680\) 226.739 + 2785.84i 0.0127868 + 0.157106i
\(681\) 210.494i 0.0118446i
\(682\) −875.198 + 1615.34i −0.0491394 + 0.0906959i
\(683\) 8615.26 0.482656 0.241328 0.970444i \(-0.422417\pi\)
0.241328 + 0.970444i \(0.422417\pi\)
\(684\) −4891.40 7502.82i −0.273432 0.419412i
\(685\) 7388.74i 0.412130i
\(686\) −9180.76 + 16944.8i −0.510967 + 0.943085i
\(687\) 2513.97i 0.139613i
\(688\) −32580.6 14367.0i −1.80541 0.796130i
\(689\) 2612.09 + 15457.7i 0.144430 + 0.854704i
\(690\) −5875.58 + 10844.5i −0.324173 + 0.598323i
\(691\) −3884.91 −0.213877 −0.106938 0.994266i \(-0.534105\pi\)
−0.106938 + 0.994266i \(0.534105\pi\)
\(692\) 16334.6 10649.2i 0.897325 0.585004i
\(693\) 3469.30i 0.190170i
\(694\) 15635.7 28858.7i 0.855223 1.57847i
\(695\) 19073.4i 1.04100i
\(696\) −696.097 8552.64i −0.0379102 0.465786i
\(697\) 4572.64i 0.248495i
\(698\) −5017.53 2718.52i −0.272087 0.147418i
\(699\) 18924.1i 1.02400i
\(700\) −6109.52 + 3983.05i −0.329883 + 0.215065i
\(701\) 5168.26i 0.278463i 0.990260 + 0.139231i \(0.0444632\pi\)
−0.990260 + 0.139231i \(0.955537\pi\)
\(702\) 1156.96 3387.38i 0.0622032 0.182120i
\(703\) −45113.4 −2.42032
\(704\) 11735.0 1922.95i 0.628238 0.102946i
\(705\) −4101.07 −0.219085
\(706\) 9175.62 16935.3i 0.489135 0.902789i
\(707\) −24690.9 −1.31343
\(708\) 16267.2 10605.3i 0.863504 0.562954i
\(709\) −12559.3 −0.665269 −0.332635 0.943056i \(-0.607938\pi\)
−0.332635 + 0.943056i \(0.607938\pi\)
\(710\) −9281.25 + 17130.3i −0.490590 + 0.905476i
\(711\) 4924.10 0.259730
\(712\) −14799.0 + 1204.48i −0.778953 + 0.0633987i
\(713\) 4856.32i 0.255078i
\(714\) 1827.22 + 989.995i 0.0957732 + 0.0518902i
\(715\) 8985.44 1518.39i 0.469981 0.0794187i
\(716\) −20330.9 + 13254.6i −1.06118 + 0.691826i
\(717\) −15338.4 −0.798915
\(718\) −6008.48 + 11089.8i −0.312304 + 0.576416i
\(719\) −595.772 −0.0309020 −0.0154510 0.999881i \(-0.504918\pi\)
−0.0154510 + 0.999881i \(0.504918\pi\)
\(720\) 1945.43 4411.73i 0.100697 0.228355i
\(721\) 3655.97i 0.188843i
\(722\) −21424.8 11608.0i −1.10436 0.598347i
\(723\) −829.823 −0.0426852
\(724\) 12230.2 7973.39i 0.627807 0.409294i
\(725\) 6943.43i 0.355686i
\(726\) −3199.68 + 5905.61i −0.163569 + 0.301898i
\(727\) 21554.1 1.09958 0.549792 0.835302i \(-0.314707\pi\)
0.549792 + 0.835302i \(0.314707\pi\)
\(728\) 17061.6 4331.33i 0.868607 0.220508i
\(729\) −729.000 −0.0370370
\(730\) −5069.18 + 9356.13i −0.257012 + 0.474364i
\(731\) 8210.10i 0.415406i
\(732\) 81.3606 + 124.797i 0.00410816 + 0.00630142i
\(733\) −264.927 −0.0133496 −0.00667482 0.999978i \(-0.502125\pi\)
−0.00667482 + 0.999978i \(0.502125\pi\)
\(734\) 11471.9 + 6215.50i 0.576887 + 0.312559i
\(735\) 1696.01i 0.0851134i
\(736\) −24852.2 + 19246.1i −1.24465 + 0.963888i
\(737\) 5864.32 0.293100
\(738\) 3757.69 6935.51i 0.187429 0.345935i
\(739\) 405.069 0.0201633 0.0100817 0.999949i \(-0.496791\pi\)
0.0100817 + 0.999949i \(0.496791\pi\)
\(740\) −13263.5 20344.7i −0.658889 1.01066i
\(741\) −2914.53 17247.5i −0.144491 0.855065i
\(742\) 13804.8 + 7479.47i 0.683004 + 0.370054i
\(743\) 16691.2i 0.824149i 0.911150 + 0.412074i \(0.135196\pi\)
−0.911150 + 0.412074i \(0.864804\pi\)
\(744\) 154.005 + 1892.20i 0.00758886 + 0.0932411i
\(745\) 14500.3 0.713086
\(746\) −15544.5 + 28690.3i −0.762902 + 1.40808i
\(747\) 8631.63 0.422777
\(748\) 1497.40 + 2296.83i 0.0731958 + 0.112273i
\(749\) 14463.8 0.705604
\(750\) −6088.17 + 11236.9i −0.296412 + 0.547083i
\(751\) −30944.9 −1.50359 −0.751796 0.659396i \(-0.770812\pi\)
−0.751796 + 0.659396i \(0.770812\pi\)
\(752\) −9563.13 4217.04i −0.463739 0.204494i
\(753\) 11304.3 0.547082
\(754\) 5416.67 15859.1i 0.261623 0.765986i
\(755\) 20106.7i 0.969218i
\(756\) −1957.87 3003.13i −0.0941891 0.144475i
\(757\) 22212.4i 1.06648i −0.845965 0.533238i \(-0.820975\pi\)
0.845965 0.533238i \(-0.179025\pi\)
\(758\) −9817.92 5319.38i −0.470452 0.254893i
\(759\) 12099.1i 0.578614i
\(760\) −1911.37 23484.2i −0.0912273 1.12087i
\(761\) 20301.1i 0.967034i −0.875335 0.483517i \(-0.839359\pi\)
0.875335 0.483517i \(-0.160641\pi\)
\(762\) 8171.38 15081.8i 0.388475 0.717003i
\(763\) 2532.46i 0.120159i
\(764\) 9003.27 + 13809.9i 0.426344 + 0.653960i
\(765\) 1111.73 0.0525419
\(766\) −1790.46 + 3304.63i −0.0844544 + 0.155876i
\(767\) 37395.2 6319.15i 1.76045 0.297485i
\(768\) 9072.97 8287.11i 0.426293 0.389369i
\(769\) 25514.7i 1.19647i 0.801322 + 0.598233i \(0.204130\pi\)
−0.801322 + 0.598233i \(0.795870\pi\)
\(770\) 4347.76 8024.60i 0.203484 0.375567i
\(771\) 5507.44i 0.257258i
\(772\) −18609.6 + 12132.4i −0.867581 + 0.565612i
\(773\) 1757.92 0.0817955 0.0408977 0.999163i \(-0.486978\pi\)
0.0408977 + 0.999163i \(0.486978\pi\)
\(774\) −6746.86 + 12452.6i −0.313321 + 0.578293i
\(775\) 1536.18i 0.0712013i
\(776\) −9422.37 + 766.884i −0.435881 + 0.0354762i
\(777\) −18057.4 −0.833726
\(778\) 11617.3 21441.9i 0.535346 0.988082i
\(779\) 38546.7i 1.77288i
\(780\) 6921.18 6385.21i 0.317716 0.293112i
\(781\) 19112.0i 0.875650i
\(782\) −6372.37 3452.57i −0.291401 0.157882i
\(783\) −3413.04 −0.155775
\(784\) −1743.97 + 3954.87i −0.0794448 + 0.180160i
\(785\) 25289.2i 1.14982i
\(786\) −8401.63 4552.03i −0.381268 0.206572i
\(787\) −39402.2 −1.78467 −0.892336 0.451372i \(-0.850935\pi\)
−0.892336 + 0.451372i \(0.850935\pi\)
\(788\) −12147.6 18633.0i −0.549163 0.842350i
\(789\) 8576.88i 0.387002i
\(790\) 11389.6 + 6170.93i 0.512942 + 0.277914i
\(791\) 17480.6i 0.785761i
\(792\) −383.689 4714.23i −0.0172144 0.211506i
\(793\) 48.4785 + 286.884i 0.00217090 + 0.0128469i
\(794\) 30963.7 + 16776.2i 1.38396 + 0.749832i
\(795\) 8399.16 0.374701
\(796\) 15556.3 + 23861.5i 0.692686 + 1.06250i
\(797\) 26469.0i 1.17639i −0.808721 0.588193i \(-0.799840\pi\)
0.808721 0.588193i \(-0.200160\pi\)
\(798\) −15403.2 8345.50i −0.683292 0.370210i
\(799\) 2409.85i 0.106701i
\(800\) −7861.36 + 6088.03i −0.347426 + 0.269055i
\(801\) 5905.72i 0.260510i
\(802\) 3623.67 6688.16i 0.159546 0.294473i
\(803\) 10438.5i 0.458739i
\(804\) 5076.33 3309.47i 0.222672 0.145169i
\(805\) 24125.0i 1.05627i
\(806\) −1198.39 + 3508.69i −0.0523716 + 0.153335i
\(807\) 4541.27 0.198092
\(808\) −33551.0 + 2730.70i −1.46079 + 0.118893i
\(809\) −837.953 −0.0364164 −0.0182082 0.999834i \(-0.505796\pi\)
−0.0182082 + 0.999834i \(0.505796\pi\)
\(810\) −1686.20 913.590i −0.0731445 0.0396300i
\(811\) −14905.9 −0.645399 −0.322700 0.946501i \(-0.604590\pi\)
−0.322700 + 0.946501i \(0.604590\pi\)
\(812\) −9166.37 14060.1i −0.396153 0.607651i
\(813\) 10189.1 0.439542
\(814\) −20947.0 11349.1i −0.901955 0.488682i
\(815\) 13423.6 0.576942
\(816\) 2592.39 + 1143.16i 0.111216 + 0.0490426i
\(817\) 69209.8i 2.96370i
\(818\) 12878.9 23770.4i 0.550490 1.01603i
\(819\) −1166.59 6903.61i −0.0497729 0.294544i
\(820\) 17383.3 11332.9i 0.740306 0.482637i
\(821\) 29526.3 1.25515 0.627574 0.778557i \(-0.284048\pi\)
0.627574 + 0.778557i \(0.284048\pi\)
\(822\) 6585.27 + 3567.92i 0.279425 + 0.151394i
\(823\) −20169.5 −0.854270 −0.427135 0.904188i \(-0.640477\pi\)
−0.427135 + 0.904188i \(0.640477\pi\)
\(824\) 404.335 + 4967.89i 0.0170943 + 0.210030i
\(825\) 3827.23i 0.161512i
\(826\) 18094.3 33396.4i 0.762205 1.40679i
\(827\) 1107.89 0.0465841 0.0232921 0.999729i \(-0.492585\pi\)
0.0232921 + 0.999729i \(0.492585\pi\)
\(828\) 6827.99 + 10473.3i 0.286581 + 0.439581i
\(829\) 14902.2i 0.624337i −0.950027 0.312168i \(-0.898945\pi\)
0.950027 0.312168i \(-0.101055\pi\)
\(830\) 19965.2 + 10817.2i 0.834944 + 0.452376i
\(831\) 5234.63 0.218516
\(832\) 22705.0 7772.54i 0.946100 0.323875i
\(833\) −996.600 −0.0414528
\(834\) 16999.3 + 9210.30i 0.705802 + 0.382406i
\(835\) 26914.8i 1.11548i
\(836\) −12622.9 19361.9i −0.522214 0.801013i
\(837\) 755.106 0.0311831
\(838\) −3821.18 + 7052.71i −0.157518 + 0.290730i
\(839\) 20653.1i 0.849851i −0.905228 0.424926i \(-0.860300\pi\)
0.905228 0.424926i \(-0.139700\pi\)
\(840\) −765.059 9399.96i −0.0314251 0.386106i
\(841\) 8409.78 0.344819
\(842\) −16640.9 9016.11i −0.681098 0.369021i
\(843\) −10424.0 −0.425886
\(844\) −23919.5 + 15594.1i −0.975526 + 0.635987i
\(845\) 17369.7 6042.91i 0.707142 0.246015i
\(846\) −1980.35 + 3655.11i −0.0804798 + 0.148540i
\(847\) 13137.8i 0.532963i
\(848\) 19585.7 + 8636.67i 0.793131 + 0.349746i
\(849\) 5118.27 0.206901
\(850\) −2015.74 1092.13i −0.0813403 0.0440705i
\(851\) 62974.5 2.53671
\(852\) 10785.7 + 16544.0i 0.433700 + 0.665243i
\(853\) 28154.5 1.13012 0.565059 0.825050i \(-0.308853\pi\)
0.565059 + 0.825050i \(0.308853\pi\)
\(854\) 256.207 + 138.814i 0.0102661 + 0.00556219i
\(855\) −9371.68 −0.374859
\(856\) 19654.1 1599.64i 0.784770 0.0638721i
\(857\) 22264.1 0.887429 0.443715 0.896168i \(-0.353660\pi\)
0.443715 + 0.896168i \(0.353660\pi\)
\(858\) 2985.67 8741.55i 0.118799 0.347822i
\(859\) 26221.1i 1.04150i 0.853708 + 0.520752i \(0.174349\pi\)
−0.853708 + 0.520752i \(0.825651\pi\)
\(860\) −31211.4 + 20348.0i −1.23756 + 0.806816i
\(861\) 15429.0i 0.610705i
\(862\) 6073.57 11209.9i 0.239985 0.442937i
\(863\) 12080.6i 0.476510i 0.971203 + 0.238255i \(0.0765754\pi\)
−0.971203 + 0.238255i \(0.923425\pi\)
\(864\) −2992.57 3864.25i −0.117835 0.152158i
\(865\) 20403.4i 0.802006i
\(866\) −37744.6 20450.2i −1.48108 0.802454i
\(867\) 14085.7i 0.551761i
\(868\) 2027.98 + 3110.68i 0.0793020 + 0.121640i
\(869\) 12707.2 0.496046
\(870\) −7894.48 4277.26i −0.307641 0.166681i
\(871\) 11669.5 1971.94i 0.453967 0.0767127i
\(872\) −280.079 3441.22i −0.0108769 0.133640i
\(873\) 3760.12i 0.145774i
\(874\) 53718.1 + 29104.6i 2.07899 + 1.12641i
\(875\) 24997.9i 0.965808i
\(876\) 5890.88 + 9035.89i 0.227208 + 0.348510i
\(877\) −3643.52 −0.140288 −0.0701442 0.997537i \(-0.522346\pi\)
−0.0701442 + 0.997537i \(0.522346\pi\)
\(878\) 17200.3 + 9319.16i 0.661140 + 0.358208i
\(879\) 10753.6i 0.412640i
\(880\) 5020.43 11385.0i 0.192317 0.436123i
\(881\) 1807.45 0.0691196 0.0345598 0.999403i \(-0.488997\pi\)
0.0345598 + 0.999403i \(0.488997\pi\)
\(882\) 1511.58 + 818.982i 0.0577071 + 0.0312659i
\(883\) 38355.1i 1.46178i 0.682496 + 0.730890i \(0.260895\pi\)
−0.682496 + 0.730890i \(0.739105\pi\)
\(884\) 3752.04 + 4066.98i 0.142754 + 0.154737i
\(885\) 20319.2i 0.771777i
\(886\) −1260.80 + 2327.05i −0.0478076 + 0.0882379i
\(887\) −4215.29 −0.159567 −0.0797833 0.996812i \(-0.525423\pi\)
−0.0797833 + 0.996812i \(0.525423\pi\)
\(888\) −24537.1 + 1997.07i −0.927266 + 0.0754699i
\(889\) 33551.5i 1.26578i
\(890\) −7401.10 + 13660.1i −0.278748 + 0.514481i
\(891\) −1881.27 −0.0707352
\(892\) 9428.88 6147.09i 0.353926 0.230740i
\(893\) 20314.6i 0.761257i
\(894\) 7001.98 12923.5i 0.261948 0.483474i
\(895\) 25395.1i 0.948452i
\(896\) 7881.76 22706.1i 0.293874 0.846605i
\(897\) 4068.45 + 24076.1i 0.151440 + 0.896184i
\(898\) −4068.07 + 7508.38i −0.151173 + 0.279018i
\(899\) 3535.27 0.131154
\(900\) 2159.86 + 3312.97i 0.0799949 + 0.122703i
\(901\) 4935.46i 0.182491i
\(902\) 9697.17 17897.9i 0.357960 0.660683i
\(903\) 27702.4i 1.02091i
\(904\) −1933.27 23753.3i −0.0711280 0.873920i
\(905\) 15276.6i 0.561118i
\(906\) −17920.3 9709.28i −0.657132 0.356037i
\(907\) 3904.06i 0.142924i 0.997443 + 0.0714621i \(0.0227665\pi\)
−0.997443 + 0.0714621i \(0.977233\pi\)
\(908\) −306.553 470.215i −0.0112041 0.0171857i
\(909\) 13388.9i 0.488541i
\(910\) 5953.30 17430.3i 0.216868 0.634953i
\(911\) 474.398 0.0172530 0.00862652 0.999963i \(-0.497254\pi\)
0.00862652 + 0.999963i \(0.497254\pi\)
\(912\) −21853.5 9636.69i −0.793466 0.349893i
\(913\) 22275.0 0.807441
\(914\) −18503.4 + 34151.5i −0.669627 + 1.23592i
\(915\) 155.883 0.00563205
\(916\) −3661.22 5615.87i −0.132063 0.202569i
\(917\) −18690.5 −0.673081
\(918\) 536.838 990.835i 0.0193010 0.0356236i
\(919\) 52576.1 1.88719 0.943594 0.331106i \(-0.107422\pi\)
0.943594 + 0.331106i \(0.107422\pi\)
\(920\) 2668.12 + 32782.0i 0.0956144 + 1.17477i
\(921\) 13805.7i 0.493935i
\(922\) 23971.5 + 12987.8i 0.856246 + 0.463917i
\(923\) 6426.65 + 38031.3i 0.229183 + 1.35625i
\(924\) −5052.51 7749.95i −0.179887 0.275925i
\(925\) 19920.4 0.708085
\(926\) 8544.50 15770.5i 0.303229 0.559665i
\(927\) 1982.50 0.0702415
\(928\) −14010.6 18091.7i −0.495605 0.639966i
\(929\) 38697.4i 1.36665i −0.730112 0.683327i \(-0.760532\pi\)
0.730112 0.683327i \(-0.239468\pi\)
\(930\) 1746.59 + 946.306i 0.0615837 + 0.0333662i
\(931\) 8401.18 0.295744
\(932\) −27560.1 42273.9i −0.968629 1.48576i
\(933\) 28727.6i 1.00804i
\(934\) −7742.95 + 14291.1i −0.271260 + 0.500661i
\(935\) 2868.95 0.100347
\(936\) −2348.72 9251.89i −0.0820197 0.323085i
\(937\) 3332.33 0.116182 0.0580911 0.998311i \(-0.481499\pi\)
0.0580911 + 0.998311i \(0.481499\pi\)
\(938\) 5646.48 10421.6i 0.196550 0.362770i
\(939\) 1922.45i 0.0668122i
\(940\) −9161.24 + 5972.59i −0.317879 + 0.207239i
\(941\) −10587.3 −0.366776 −0.183388 0.983041i \(-0.558706\pi\)
−0.183388 + 0.983041i \(0.558706\pi\)
\(942\) 22539.2 + 12211.8i 0.779583 + 0.422381i
\(943\) 53807.9i 1.85814i
\(944\) 20893.8 47381.6i 0.720376 1.63362i
\(945\) −3751.17 −0.129128
\(946\) −17411.1 + 32135.4i −0.598397 + 1.10445i
\(947\) 8565.48 0.293918 0.146959 0.989143i \(-0.453051\pi\)
0.146959 + 0.989143i \(0.453051\pi\)
\(948\) 10999.8 7171.22i 0.376852 0.245686i
\(949\) 3510.07 + 20771.7i 0.120065 + 0.710515i
\(950\) 16992.4 + 9206.52i 0.580321 + 0.314420i
\(951\) 11532.2i 0.393225i
\(952\) 5523.55 449.560i 0.188045 0.0153049i
\(953\) −7915.61 −0.269057 −0.134529 0.990910i \(-0.542952\pi\)
−0.134529 + 0.990910i \(0.542952\pi\)
\(954\) 4055.84 7485.82i 0.137644 0.254048i
\(955\) 17249.8 0.584493
\(956\) −34263.8 + 22338.0i −1.15918 + 0.755715i
\(957\) −8807.77 −0.297508
\(958\) −10449.0 + 19285.6i −0.352393 + 0.650408i
\(959\) 14649.8 0.493291
\(960\) −2079.19 12688.4i −0.0699016 0.426581i
\(961\) 29008.9 0.973746
\(962\) −45499.0 15540.2i −1.52489 0.520827i
\(963\) 7843.22i 0.262455i
\(964\) −1853.71 + 1208.51i −0.0619336 + 0.0403771i
\(965\) 23245.0i 0.775422i
\(966\) 21501.6 + 11649.6i 0.716151 + 0.388013i
\(967\) 17534.8i 0.583124i 0.956552 + 0.291562i \(0.0941750\pi\)
−0.956552 + 0.291562i \(0.905825\pi\)
\(968\) 1452.98 + 17852.2i 0.0482445 + 0.592759i
\(969\) 5506.93i 0.182568i
\(970\) −4712.22 + 8697.28i −0.155980 + 0.287889i
\(971\) 26090.7i 0.862296i 0.902281 + 0.431148i \(0.141891\pi\)
−0.902281 + 0.431148i \(0.858109\pi\)
\(972\) −1628.49 + 1061.68i −0.0537384 + 0.0350344i
\(973\) 37817.2 1.24601
\(974\) 13973.1 25789.9i 0.459678 0.848422i
\(975\) 1286.95 + 7615.86i 0.0422722 + 0.250157i
\(976\) 363.497 + 160.291i 0.0119214 + 0.00525695i
\(977\) 25141.6i 0.823286i −0.911345 0.411643i \(-0.864955\pi\)
0.911345 0.411643i \(-0.135045\pi\)
\(978\) 6482.07 11963.9i 0.211936 0.391168i
\(979\) 15240.4i 0.497534i
\(980\) 2469.99 + 3788.66i 0.0805111 + 0.123494i
\(981\) −1373.26 −0.0446940
\(982\) −25247.2 + 46598.3i −0.820437 + 1.51427i
\(983\) 38316.0i 1.24322i −0.783325 0.621612i \(-0.786478\pi\)
0.783325 0.621612i \(-0.213522\pi\)
\(984\) −1706.38 20965.5i −0.0552818 0.679224i
\(985\) −23274.2 −0.752871
\(986\) 2513.38 4638.90i 0.0811787 0.149830i
\(987\) 8131.27i 0.262230i
\(988\) −31629.1 34284.0i −1.01848 1.10397i
\(989\) 96611.2i 3.10622i
\(990\) −4351.45 2357.63i −0.139695 0.0756873i
\(991\) −34968.5 −1.12090 −0.560449 0.828189i \(-0.689371\pi\)
−0.560449 + 0.828189i \(0.689371\pi\)
\(992\) 3099.73 + 4002.63i 0.0992103 + 0.128109i
\(993\) 27367.2i 0.874594i
\(994\) 33964.5 + 18402.1i 1.08379 + 0.587203i
\(995\) 29805.1 0.949632
\(996\) 19281.9 12570.7i 0.613424 0.399917i
\(997\) 9702.76i 0.308214i 0.988054 + 0.154107i \(0.0492501\pi\)
−0.988054 + 0.154107i \(0.950750\pi\)
\(998\) 23208.8 + 12574.6i 0.736133 + 0.398839i
\(999\) 9791.86i 0.310111i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.m.a.181.11 84
4.3 odd 2 1248.4.m.a.337.58 84
8.3 odd 2 1248.4.m.a.337.59 84
8.5 even 2 inner 312.4.m.a.181.73 yes 84
13.12 even 2 inner 312.4.m.a.181.74 yes 84
52.51 odd 2 1248.4.m.a.337.57 84
104.51 odd 2 1248.4.m.a.337.60 84
104.77 even 2 inner 312.4.m.a.181.12 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.m.a.181.11 84 1.1 even 1 trivial
312.4.m.a.181.12 yes 84 104.77 even 2 inner
312.4.m.a.181.73 yes 84 8.5 even 2 inner
312.4.m.a.181.74 yes 84 13.12 even 2 inner
1248.4.m.a.337.57 84 52.51 odd 2
1248.4.m.a.337.58 84 4.3 odd 2
1248.4.m.a.337.59 84 8.3 odd 2
1248.4.m.a.337.60 84 104.51 odd 2