Properties

Label 312.4.m.a.181.32
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.32
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.31

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04560 + 2.62807i) q^{2} +3.00000i q^{3} +(-5.81346 - 5.49579i) q^{4} -7.49353 q^{5} +(-7.88420 - 3.13679i) q^{6} -9.78456i q^{7} +(20.5218 - 9.53176i) q^{8} -9.00000 q^{9} +(7.83521 - 19.6935i) q^{10} +72.0538 q^{11} +(16.4874 - 17.4404i) q^{12} +(-46.8270 + 2.05771i) q^{13} +(25.7145 + 10.2307i) q^{14} -22.4806i q^{15} +(3.59252 + 63.8991i) q^{16} +14.0519 q^{17} +(9.41037 - 23.6526i) q^{18} +126.824 q^{19} +(43.5633 + 41.1829i) q^{20} +29.3537 q^{21} +(-75.3392 + 189.362i) q^{22} -74.7533 q^{23} +(28.5953 + 61.5655i) q^{24} -68.8471 q^{25} +(43.5543 - 125.216i) q^{26} -27.0000i q^{27} +(-53.7739 + 56.8821i) q^{28} +177.389i q^{29} +(59.0804 + 23.5056i) q^{30} +204.084i q^{31} +(-171.687 - 57.3713i) q^{32} +216.161i q^{33} +(-14.6926 + 36.9292i) q^{34} +73.3208i q^{35} +(52.3211 + 49.4621i) q^{36} +262.345 q^{37} +(-132.606 + 333.301i) q^{38} +(-6.17314 - 140.481i) q^{39} +(-153.781 + 71.4265i) q^{40} -376.047i q^{41} +(-30.6921 + 77.1434i) q^{42} +179.424i q^{43} +(-418.882 - 395.993i) q^{44} +67.4417 q^{45} +(78.1618 - 196.457i) q^{46} +4.21422i q^{47} +(-191.697 + 10.7776i) q^{48} +247.262 q^{49} +(71.9863 - 180.935i) q^{50} +42.1556i q^{51} +(283.535 + 245.389i) q^{52} +102.044i q^{53} +(70.9578 + 28.2311i) q^{54} -539.937 q^{55} +(-93.2640 - 200.797i) q^{56} +380.471i q^{57} +(-466.189 - 185.477i) q^{58} +231.843 q^{59} +(-123.549 + 130.690i) q^{60} +876.661i q^{61} +(-536.346 - 213.389i) q^{62} +88.0610i q^{63} +(330.291 - 391.218i) q^{64} +(350.899 - 15.4195i) q^{65} +(-568.086 - 226.018i) q^{66} -597.074 q^{67} +(-81.6899 - 77.2262i) q^{68} -224.260i q^{69} +(-192.692 - 76.6640i) q^{70} +576.462i q^{71} +(-184.696 + 85.7858i) q^{72} +657.628i q^{73} +(-274.307 + 689.461i) q^{74} -206.541i q^{75} +(-737.284 - 696.996i) q^{76} -705.014i q^{77} +(375.648 + 130.663i) q^{78} -137.370 q^{79} +(-26.9206 - 478.829i) q^{80} +81.0000 q^{81} +(988.277 + 393.194i) q^{82} +1087.78 q^{83} +(-170.646 - 161.322i) q^{84} -105.298 q^{85} +(-471.537 - 187.605i) q^{86} -532.166 q^{87} +(1478.68 - 686.799i) q^{88} -269.127i q^{89} +(-70.5169 + 177.241i) q^{90} +(20.1338 + 458.181i) q^{91} +(434.575 + 410.829i) q^{92} -612.251 q^{93} +(-11.0752 - 4.40637i) q^{94} -950.356 q^{95} +(172.114 - 515.062i) q^{96} +1734.37i q^{97} +(-258.537 + 649.822i) q^{98} -648.484 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04560 + 2.62807i −0.369674 + 0.929161i
\(3\) 3.00000i 0.577350i
\(4\) −5.81346 5.49579i −0.726682 0.686974i
\(5\) −7.49353 −0.670241 −0.335121 0.942175i \(-0.608777\pi\)
−0.335121 + 0.942175i \(0.608777\pi\)
\(6\) −7.88420 3.13679i −0.536452 0.213432i
\(7\) 9.78456i 0.528316i −0.964479 0.264158i \(-0.914906\pi\)
0.964479 0.264158i \(-0.0850941\pi\)
\(8\) 20.5218 9.53176i 0.906945 0.421248i
\(9\) −9.00000 −0.333333
\(10\) 7.83521 19.6935i 0.247771 0.622762i
\(11\) 72.0538 1.97500 0.987502 0.157608i \(-0.0503781\pi\)
0.987502 + 0.157608i \(0.0503781\pi\)
\(12\) 16.4874 17.4404i 0.396625 0.419550i
\(13\) −46.8270 + 2.05771i −0.999036 + 0.0439005i
\(14\) 25.7145 + 10.2307i 0.490891 + 0.195305i
\(15\) 22.4806i 0.386964i
\(16\) 3.59252 + 63.8991i 0.0561331 + 0.998423i
\(17\) 14.0519 0.200475 0.100238 0.994964i \(-0.468040\pi\)
0.100238 + 0.994964i \(0.468040\pi\)
\(18\) 9.41037 23.6526i 0.123225 0.309720i
\(19\) 126.824 1.53133 0.765667 0.643237i \(-0.222409\pi\)
0.765667 + 0.643237i \(0.222409\pi\)
\(20\) 43.5633 + 41.1829i 0.487052 + 0.460438i
\(21\) 29.3537 0.305024
\(22\) −75.3392 + 189.362i −0.730108 + 1.83510i
\(23\) −74.7533 −0.677702 −0.338851 0.940840i \(-0.610038\pi\)
−0.338851 + 0.940840i \(0.610038\pi\)
\(24\) 28.5953 + 61.5655i 0.243208 + 0.523625i
\(25\) −68.8471 −0.550777
\(26\) 43.5543 125.216i 0.328527 0.944495i
\(27\) 27.0000i 0.192450i
\(28\) −53.7739 + 56.8821i −0.362940 + 0.383918i
\(29\) 177.389i 1.13587i 0.823073 + 0.567936i \(0.192258\pi\)
−0.823073 + 0.567936i \(0.807742\pi\)
\(30\) 59.0804 + 23.5056i 0.359552 + 0.143051i
\(31\) 204.084i 1.18240i 0.806523 + 0.591202i \(0.201346\pi\)
−0.806523 + 0.591202i \(0.798654\pi\)
\(32\) −171.687 57.3713i −0.948447 0.316935i
\(33\) 216.161i 1.14027i
\(34\) −14.6926 + 36.9292i −0.0741105 + 0.186274i
\(35\) 73.3208i 0.354099i
\(36\) 52.3211 + 49.4621i 0.242227 + 0.228991i
\(37\) 262.345 1.16566 0.582828 0.812595i \(-0.301946\pi\)
0.582828 + 0.812595i \(0.301946\pi\)
\(38\) −132.606 + 333.301i −0.566095 + 1.42286i
\(39\) −6.17314 140.481i −0.0253460 0.576794i
\(40\) −153.781 + 71.4265i −0.607872 + 0.282338i
\(41\) 376.047i 1.43241i −0.697891 0.716204i \(-0.745878\pi\)
0.697891 0.716204i \(-0.254122\pi\)
\(42\) −30.6921 + 77.1434i −0.112759 + 0.283416i
\(43\) 179.424i 0.636322i 0.948037 + 0.318161i \(0.103065\pi\)
−0.948037 + 0.318161i \(0.896935\pi\)
\(44\) −418.882 395.993i −1.43520 1.35678i
\(45\) 67.4417 0.223414
\(46\) 78.1618 196.457i 0.250529 0.629694i
\(47\) 4.21422i 0.0130789i 0.999979 + 0.00653943i \(0.00208158\pi\)
−0.999979 + 0.00653943i \(0.997918\pi\)
\(48\) −191.697 + 10.7776i −0.576440 + 0.0324085i
\(49\) 247.262 0.720882
\(50\) 71.9863 180.935i 0.203608 0.511760i
\(51\) 42.1556i 0.115744i
\(52\) 283.535 + 245.389i 0.756140 + 0.654410i
\(53\) 102.044i 0.264468i 0.991219 + 0.132234i \(0.0422150\pi\)
−0.991219 + 0.132234i \(0.957785\pi\)
\(54\) 70.9578 + 28.2311i 0.178817 + 0.0711438i
\(55\) −539.937 −1.32373
\(56\) −93.2640 200.797i −0.222552 0.479154i
\(57\) 380.471i 0.884116i
\(58\) −466.189 185.477i −1.05541 0.419902i
\(59\) 231.843 0.511584 0.255792 0.966732i \(-0.417664\pi\)
0.255792 + 0.966732i \(0.417664\pi\)
\(60\) −123.549 + 130.690i −0.265834 + 0.281200i
\(61\) 876.661i 1.84008i 0.391824 + 0.920040i \(0.371844\pi\)
−0.391824 + 0.920040i \(0.628156\pi\)
\(62\) −536.346 213.389i −1.09864 0.437104i
\(63\) 88.0610i 0.176105i
\(64\) 330.291 391.218i 0.645100 0.764098i
\(65\) 350.899 15.4195i 0.669595 0.0294240i
\(66\) −568.086 226.018i −1.05949 0.421528i
\(67\) −597.074 −1.08872 −0.544360 0.838852i \(-0.683227\pi\)
−0.544360 + 0.838852i \(0.683227\pi\)
\(68\) −81.6899 77.2262i −0.145682 0.137721i
\(69\) 224.260i 0.391271i
\(70\) −192.692 76.6640i −0.329016 0.130901i
\(71\) 576.462i 0.963570i 0.876289 + 0.481785i \(0.160011\pi\)
−0.876289 + 0.481785i \(0.839989\pi\)
\(72\) −184.696 + 85.7858i −0.302315 + 0.140416i
\(73\) 657.628i 1.05438i 0.849748 + 0.527189i \(0.176754\pi\)
−0.849748 + 0.527189i \(0.823246\pi\)
\(74\) −274.307 + 689.461i −0.430913 + 1.08308i
\(75\) 206.541i 0.317991i
\(76\) −737.284 696.996i −1.11279 1.05199i
\(77\) 705.014i 1.04343i
\(78\) 375.648 + 130.663i 0.545304 + 0.189675i
\(79\) −137.370 −0.195637 −0.0978185 0.995204i \(-0.531186\pi\)
−0.0978185 + 0.995204i \(0.531186\pi\)
\(80\) −26.9206 478.829i −0.0376227 0.669185i
\(81\) 81.0000 0.111111
\(82\) 988.277 + 393.194i 1.33094 + 0.529524i
\(83\) 1087.78 1.43855 0.719273 0.694727i \(-0.244475\pi\)
0.719273 + 0.694727i \(0.244475\pi\)
\(84\) −170.646 161.322i −0.221655 0.209543i
\(85\) −105.298 −0.134367
\(86\) −471.537 187.605i −0.591246 0.235232i
\(87\) −532.166 −0.655795
\(88\) 1478.68 686.799i 1.79122 0.831967i
\(89\) 269.127i 0.320532i −0.987074 0.160266i \(-0.948765\pi\)
0.987074 0.160266i \(-0.0512352\pi\)
\(90\) −70.5169 + 177.241i −0.0825903 + 0.207587i
\(91\) 20.1338 + 458.181i 0.0231934 + 0.527807i
\(92\) 434.575 + 410.829i 0.492474 + 0.465564i
\(93\) −612.251 −0.682661
\(94\) −11.0752 4.40637i −0.0121524 0.00483492i
\(95\) −950.356 −1.02636
\(96\) 172.114 515.062i 0.182982 0.547586i
\(97\) 1734.37i 1.81545i 0.419570 + 0.907723i \(0.362181\pi\)
−0.419570 + 0.907723i \(0.637819\pi\)
\(98\) −258.537 + 649.822i −0.266491 + 0.669816i
\(99\) −648.484 −0.658335
\(100\) 400.239 + 378.369i 0.400239 + 0.378369i
\(101\) 239.851i 0.236297i −0.992996 0.118149i \(-0.962304\pi\)
0.992996 0.118149i \(-0.0376959\pi\)
\(102\) −110.788 44.0778i −0.107545 0.0427877i
\(103\) 530.863 0.507839 0.253920 0.967225i \(-0.418280\pi\)
0.253920 + 0.967225i \(0.418280\pi\)
\(104\) −941.362 + 488.571i −0.887578 + 0.460657i
\(105\) −219.962 −0.204439
\(106\) −268.178 106.697i −0.245733 0.0977669i
\(107\) 740.028i 0.668609i −0.942465 0.334305i \(-0.891499\pi\)
0.942465 0.334305i \(-0.108501\pi\)
\(108\) −148.386 + 156.963i −0.132208 + 0.139850i
\(109\) 1064.00 0.934977 0.467489 0.883999i \(-0.345159\pi\)
0.467489 + 0.883999i \(0.345159\pi\)
\(110\) 564.556 1418.99i 0.489349 1.22996i
\(111\) 787.036i 0.672992i
\(112\) 625.224 35.1512i 0.527483 0.0296561i
\(113\) 115.266 0.0959581 0.0479791 0.998848i \(-0.484722\pi\)
0.0479791 + 0.998848i \(0.484722\pi\)
\(114\) −999.902 397.819i −0.821486 0.326835i
\(115\) 560.166 0.454224
\(116\) 974.892 1031.24i 0.780314 0.825417i
\(117\) 421.443 18.5194i 0.333012 0.0146335i
\(118\) −242.415 + 609.300i −0.189119 + 0.475344i
\(119\) 137.491i 0.105914i
\(120\) −214.279 461.343i −0.163008 0.350955i
\(121\) 3860.75 2.90064
\(122\) −2303.92 916.634i −1.70973 0.680230i
\(123\) 1128.14 0.827001
\(124\) 1121.60 1186.43i 0.812281 0.859232i
\(125\) 1452.60 1.03939
\(126\) −231.430 92.0763i −0.163630 0.0651017i
\(127\) 1036.50 0.724210 0.362105 0.932137i \(-0.382058\pi\)
0.362105 + 0.932137i \(0.382058\pi\)
\(128\) 682.796 + 1277.08i 0.471494 + 0.881869i
\(129\) −538.271 −0.367380
\(130\) −326.375 + 938.309i −0.220192 + 0.633039i
\(131\) 1820.97i 1.21449i 0.794513 + 0.607247i \(0.207726\pi\)
−0.794513 + 0.607247i \(0.792274\pi\)
\(132\) 1187.98 1256.64i 0.783335 0.828613i
\(133\) 1240.91i 0.809029i
\(134\) 624.299 1569.15i 0.402472 1.01160i
\(135\) 202.325i 0.128988i
\(136\) 288.370 133.939i 0.181820 0.0844498i
\(137\) 475.278i 0.296392i −0.988958 0.148196i \(-0.952653\pi\)
0.988958 0.148196i \(-0.0473467\pi\)
\(138\) 589.370 + 234.485i 0.363554 + 0.144643i
\(139\) 1722.61i 1.05115i −0.850748 0.525574i \(-0.823851\pi\)
0.850748 0.525574i \(-0.176149\pi\)
\(140\) 402.956 426.247i 0.243257 0.257318i
\(141\) −12.6426 −0.00755109
\(142\) −1514.98 602.747i −0.895312 0.356207i
\(143\) −3374.06 + 148.266i −1.97310 + 0.0867037i
\(144\) −32.3327 575.092i −0.0187110 0.332808i
\(145\) 1329.27i 0.761308i
\(146\) −1728.29 687.614i −0.979687 0.389776i
\(147\) 741.787i 0.416201i
\(148\) −1525.13 1441.80i −0.847062 0.800776i
\(149\) 1885.30 1.03658 0.518289 0.855206i \(-0.326569\pi\)
0.518289 + 0.855206i \(0.326569\pi\)
\(150\) 542.804 + 215.959i 0.295465 + 0.117553i
\(151\) 2416.05i 1.30209i 0.759041 + 0.651043i \(0.225668\pi\)
−0.759041 + 0.651043i \(0.774332\pi\)
\(152\) 2602.65 1208.85i 1.38884 0.645071i
\(153\) −126.467 −0.0668251
\(154\) 1852.82 + 737.161i 0.969512 + 0.385728i
\(155\) 1529.31i 0.792496i
\(156\) −736.167 + 850.606i −0.377824 + 0.436558i
\(157\) 2426.92i 1.23369i −0.787085 0.616845i \(-0.788411\pi\)
0.787085 0.616845i \(-0.211589\pi\)
\(158\) 143.634 361.017i 0.0723220 0.181778i
\(159\) −306.131 −0.152690
\(160\) 1286.54 + 429.913i 0.635689 + 0.212423i
\(161\) 731.428i 0.358041i
\(162\) −84.6933 + 212.873i −0.0410749 + 0.103240i
\(163\) −1149.46 −0.552348 −0.276174 0.961108i \(-0.589067\pi\)
−0.276174 + 0.961108i \(0.589067\pi\)
\(164\) −2066.68 + 2186.13i −0.984027 + 1.04090i
\(165\) 1619.81i 0.764255i
\(166\) −1137.38 + 2858.76i −0.531793 + 1.33664i
\(167\) 2356.30i 1.09183i −0.837840 0.545916i \(-0.816182\pi\)
0.837840 0.545916i \(-0.183818\pi\)
\(168\) 602.391 279.792i 0.276640 0.128491i
\(169\) 2188.53 192.713i 0.996145 0.0877164i
\(170\) 110.099 276.730i 0.0496719 0.124848i
\(171\) −1141.41 −0.510445
\(172\) 986.075 1043.07i 0.437137 0.462403i
\(173\) 3329.62i 1.46327i −0.681694 0.731637i \(-0.738756\pi\)
0.681694 0.731637i \(-0.261244\pi\)
\(174\) 556.431 1398.57i 0.242431 0.609340i
\(175\) 673.638i 0.290984i
\(176\) 258.855 + 4604.17i 0.110863 + 1.97189i
\(177\) 695.530i 0.295363i
\(178\) 707.282 + 281.398i 0.297826 + 0.118492i
\(179\) 2221.93i 0.927793i 0.885889 + 0.463897i \(0.153549\pi\)
−0.885889 + 0.463897i \(0.846451\pi\)
\(180\) −392.069 370.646i −0.162351 0.153479i
\(181\) 1776.63i 0.729592i 0.931088 + 0.364796i \(0.118861\pi\)
−0.931088 + 0.364796i \(0.881139\pi\)
\(182\) −1225.18 426.160i −0.498992 0.173566i
\(183\) −2629.98 −1.06237
\(184\) −1534.07 + 712.530i −0.614639 + 0.285481i
\(185\) −1965.89 −0.781271
\(186\) 640.168 1609.04i 0.252362 0.634303i
\(187\) 1012.49 0.395939
\(188\) 23.1605 24.4992i 0.00898484 0.00950417i
\(189\) −264.183 −0.101675
\(190\) 993.689 2497.60i 0.379420 0.953657i
\(191\) 2034.25 0.770647 0.385323 0.922782i \(-0.374090\pi\)
0.385323 + 0.922782i \(0.374090\pi\)
\(192\) 1173.65 + 990.874i 0.441152 + 0.372449i
\(193\) 1853.76i 0.691381i −0.938349 0.345690i \(-0.887645\pi\)
0.938349 0.345690i \(-0.112355\pi\)
\(194\) −4558.03 1813.45i −1.68684 0.671124i
\(195\) 46.2586 + 1052.70i 0.0169879 + 0.386591i
\(196\) −1437.45 1358.90i −0.523852 0.495227i
\(197\) −497.507 −0.179928 −0.0899642 0.995945i \(-0.528675\pi\)
−0.0899642 + 0.995945i \(0.528675\pi\)
\(198\) 678.053 1704.26i 0.243369 0.611699i
\(199\) −3080.62 −1.09738 −0.548691 0.836025i \(-0.684874\pi\)
−0.548691 + 0.836025i \(0.684874\pi\)
\(200\) −1412.87 + 656.234i −0.499524 + 0.232014i
\(201\) 1791.22i 0.628573i
\(202\) 630.343 + 250.787i 0.219558 + 0.0873530i
\(203\) 1735.67 0.600099
\(204\) 231.678 245.070i 0.0795134 0.0841094i
\(205\) 2817.92i 0.960059i
\(206\) −555.068 + 1395.14i −0.187735 + 0.471865i
\(207\) 672.780 0.225901
\(208\) −299.713 2984.81i −0.0999103 0.994996i
\(209\) 9138.13 3.02439
\(210\) 229.992 578.076i 0.0755760 0.189957i
\(211\) 5026.60i 1.64003i 0.572344 + 0.820013i \(0.306034\pi\)
−0.572344 + 0.820013i \(0.693966\pi\)
\(212\) 560.811 593.227i 0.181682 0.192184i
\(213\) −1729.39 −0.556318
\(214\) 1944.84 + 773.771i 0.621246 + 0.247168i
\(215\) 1344.51i 0.426489i
\(216\) −257.357 554.089i −0.0810692 0.174542i
\(217\) 1996.87 0.624683
\(218\) −1112.51 + 2796.26i −0.345637 + 0.868745i
\(219\) −1972.89 −0.608745
\(220\) 3138.90 + 2967.38i 0.961930 + 0.909368i
\(221\) −658.007 + 28.9147i −0.200282 + 0.00880097i
\(222\) −2068.38 822.922i −0.625318 0.248788i
\(223\) 5076.03i 1.52429i −0.647408 0.762143i \(-0.724147\pi\)
0.647408 0.762143i \(-0.275853\pi\)
\(224\) −561.353 + 1679.88i −0.167442 + 0.501080i
\(225\) 619.624 0.183592
\(226\) −120.521 + 302.925i −0.0354733 + 0.0891606i
\(227\) 1300.80 0.380340 0.190170 0.981751i \(-0.439096\pi\)
0.190170 + 0.981751i \(0.439096\pi\)
\(228\) 2090.99 2211.85i 0.607365 0.642471i
\(229\) −6698.62 −1.93300 −0.966500 0.256667i \(-0.917376\pi\)
−0.966500 + 0.256667i \(0.917376\pi\)
\(230\) −585.708 + 1472.15i −0.167915 + 0.422047i
\(231\) 2115.04 0.602423
\(232\) 1690.83 + 3640.34i 0.478484 + 1.03017i
\(233\) −4160.62 −1.16983 −0.584917 0.811093i \(-0.698873\pi\)
−0.584917 + 0.811093i \(0.698873\pi\)
\(234\) −391.989 + 1126.94i −0.109509 + 0.314832i
\(235\) 31.5793i 0.00876600i
\(236\) −1347.81 1274.16i −0.371759 0.351445i
\(237\) 412.110i 0.112951i
\(238\) 361.336 + 143.760i 0.0984115 + 0.0391538i
\(239\) 1312.20i 0.355144i −0.984108 0.177572i \(-0.943176\pi\)
0.984108 0.177572i \(-0.0568243\pi\)
\(240\) 1436.49 80.7619i 0.386354 0.0217215i
\(241\) 3560.36i 0.951629i 0.879546 + 0.475815i \(0.157847\pi\)
−0.879546 + 0.475815i \(0.842153\pi\)
\(242\) −4036.79 + 10146.3i −1.07229 + 2.69516i
\(243\) 243.000i 0.0641500i
\(244\) 4817.95 5096.43i 1.26409 1.33715i
\(245\) −1852.87 −0.483165
\(246\) −1179.58 + 2964.83i −0.305721 + 0.768418i
\(247\) −5938.77 + 260.967i −1.52986 + 0.0672264i
\(248\) 1945.28 + 4188.17i 0.498086 + 1.07238i
\(249\) 3263.34i 0.830545i
\(250\) −1518.83 + 3817.52i −0.384237 + 0.965765i
\(251\) 6122.00i 1.53951i 0.638339 + 0.769755i \(0.279622\pi\)
−0.638339 + 0.769755i \(0.720378\pi\)
\(252\) 483.965 511.939i 0.120980 0.127973i
\(253\) −5386.26 −1.33846
\(254\) −1083.76 + 2723.99i −0.267722 + 0.672908i
\(255\) 315.894i 0.0775767i
\(256\) −4070.19 + 459.118i −0.993698 + 0.112089i
\(257\) −164.036 −0.0398143 −0.0199071 0.999802i \(-0.506337\pi\)
−0.0199071 + 0.999802i \(0.506337\pi\)
\(258\) 562.814 1414.61i 0.135811 0.341356i
\(259\) 2566.93i 0.615836i
\(260\) −2124.68 1838.83i −0.506796 0.438613i
\(261\) 1596.50i 0.378624i
\(262\) −4785.62 1904.00i −1.12846 0.448967i
\(263\) −1372.59 −0.321815 −0.160908 0.986969i \(-0.551442\pi\)
−0.160908 + 0.986969i \(0.551442\pi\)
\(264\) 2060.40 + 4436.03i 0.480336 + 1.03416i
\(265\) 764.667i 0.177257i
\(266\) 3261.20 + 1297.49i 0.751718 + 0.299077i
\(267\) 807.380 0.185059
\(268\) 3471.06 + 3281.40i 0.791153 + 0.747922i
\(269\) 3566.60i 0.808400i −0.914671 0.404200i \(-0.867550\pi\)
0.914671 0.404200i \(-0.132450\pi\)
\(270\) −531.724 211.551i −0.119851 0.0476835i
\(271\) 4351.15i 0.975326i −0.873032 0.487663i \(-0.837849\pi\)
0.873032 0.487663i \(-0.162151\pi\)
\(272\) 50.4816 + 897.902i 0.0112533 + 0.200159i
\(273\) −1374.54 + 60.4014i −0.304730 + 0.0133907i
\(274\) 1249.06 + 496.949i 0.275396 + 0.109569i
\(275\) −4960.69 −1.08779
\(276\) −1232.49 + 1303.72i −0.268793 + 0.284330i
\(277\) 4899.77i 1.06281i 0.847118 + 0.531405i \(0.178336\pi\)
−0.847118 + 0.531405i \(0.821664\pi\)
\(278\) 4527.12 + 1801.15i 0.976687 + 0.388583i
\(279\) 1836.75i 0.394135i
\(280\) 698.876 + 1504.68i 0.149164 + 0.321149i
\(281\) 4827.29i 1.02481i −0.858743 0.512406i \(-0.828754\pi\)
0.858743 0.512406i \(-0.171246\pi\)
\(282\) 13.2191 33.2257i 0.00279144 0.00701618i
\(283\) 5713.48i 1.20011i −0.799959 0.600055i \(-0.795145\pi\)
0.799959 0.600055i \(-0.204855\pi\)
\(284\) 3168.12 3351.24i 0.661948 0.700209i
\(285\) 2851.07i 0.592571i
\(286\) 3138.26 9022.28i 0.648842 1.86538i
\(287\) −3679.46 −0.756765
\(288\) 1545.19 + 516.342i 0.316149 + 0.105645i
\(289\) −4715.54 −0.959810
\(290\) 3493.40 + 1389.88i 0.707378 + 0.281436i
\(291\) −5203.10 −1.04815
\(292\) 3614.19 3823.09i 0.724330 0.766197i
\(293\) 8943.28 1.78318 0.891590 0.452843i \(-0.149590\pi\)
0.891590 + 0.452843i \(0.149590\pi\)
\(294\) −1949.47 775.610i −0.386718 0.153859i
\(295\) −1737.32 −0.342885
\(296\) 5383.81 2500.61i 1.05719 0.491031i
\(297\) 1945.45i 0.380090i
\(298\) −1971.27 + 4954.70i −0.383196 + 0.963148i
\(299\) 3500.47 153.821i 0.677048 0.0297515i
\(300\) −1135.11 + 1200.72i −0.218452 + 0.231078i
\(301\) 1755.58 0.336179
\(302\) −6349.53 2526.21i −1.20985 0.481348i
\(303\) 719.552 0.136426
\(304\) 455.617 + 8103.92i 0.0859586 + 1.52892i
\(305\) 6569.28i 1.23330i
\(306\) 132.233 332.363i 0.0247035 0.0620913i
\(307\) −6562.74 −1.22005 −0.610025 0.792382i \(-0.708841\pi\)
−0.610025 + 0.792382i \(0.708841\pi\)
\(308\) −3874.61 + 4098.57i −0.716807 + 0.758239i
\(309\) 1592.59i 0.293201i
\(310\) 4019.12 + 1599.04i 0.736357 + 0.292965i
\(311\) −3224.79 −0.587979 −0.293989 0.955809i \(-0.594983\pi\)
−0.293989 + 0.955809i \(0.594983\pi\)
\(312\) −1465.71 2824.09i −0.265961 0.512443i
\(313\) 3942.86 0.712024 0.356012 0.934481i \(-0.384136\pi\)
0.356012 + 0.934481i \(0.384136\pi\)
\(314\) 6378.10 + 2537.58i 1.14630 + 0.456063i
\(315\) 659.887i 0.118033i
\(316\) 798.594 + 754.957i 0.142166 + 0.134398i
\(317\) −1635.90 −0.289846 −0.144923 0.989443i \(-0.546293\pi\)
−0.144923 + 0.989443i \(0.546293\pi\)
\(318\) 320.090 804.533i 0.0564457 0.141874i
\(319\) 12781.5i 2.24335i
\(320\) −2475.05 + 2931.60i −0.432373 + 0.512130i
\(321\) 2220.08 0.386022
\(322\) −1922.24 764.779i −0.332678 0.132359i
\(323\) 1782.11 0.306994
\(324\) −470.890 445.159i −0.0807424 0.0763305i
\(325\) 3223.90 141.668i 0.550246 0.0241794i
\(326\) 1201.87 3020.86i 0.204189 0.513220i
\(327\) 3191.99i 0.539809i
\(328\) −3584.39 7717.18i −0.603399 1.29912i
\(329\) 41.2342 0.00690978
\(330\) 4256.97 + 1693.67i 0.710117 + 0.282526i
\(331\) −7588.23 −1.26008 −0.630040 0.776563i \(-0.716962\pi\)
−0.630040 + 0.776563i \(0.716962\pi\)
\(332\) −6323.76 5978.21i −1.04537 0.988244i
\(333\) −2361.11 −0.388552
\(334\) 6192.51 + 2463.74i 1.01449 + 0.403622i
\(335\) 4474.19 0.729705
\(336\) 105.454 + 1875.67i 0.0171219 + 0.304543i
\(337\) −2341.44 −0.378475 −0.189238 0.981931i \(-0.560602\pi\)
−0.189238 + 0.981931i \(0.560602\pi\)
\(338\) −1781.86 + 5953.10i −0.286747 + 0.958006i
\(339\) 345.797i 0.0554015i
\(340\) 612.145 + 578.696i 0.0976419 + 0.0923065i
\(341\) 14705.0i 2.33525i
\(342\) 1193.46 2999.71i 0.188698 0.474285i
\(343\) 5775.46i 0.909170i
\(344\) 1710.22 + 3682.10i 0.268049 + 0.577109i
\(345\) 1680.50i 0.262246i
\(346\) 8750.47 + 3481.44i 1.35962 + 0.540935i
\(347\) 2305.05i 0.356604i 0.983976 + 0.178302i \(0.0570604\pi\)
−0.983976 + 0.178302i \(0.942940\pi\)
\(348\) 3093.72 + 2924.68i 0.476555 + 0.450515i
\(349\) 5388.45 0.826467 0.413234 0.910625i \(-0.364399\pi\)
0.413234 + 0.910625i \(0.364399\pi\)
\(350\) −1770.36 704.354i −0.270371 0.107569i
\(351\) 55.5583 + 1264.33i 0.00844866 + 0.192265i
\(352\) −12370.7 4133.82i −1.87319 0.625947i
\(353\) 888.251i 0.133929i −0.997755 0.0669644i \(-0.978669\pi\)
0.997755 0.0669644i \(-0.0213314\pi\)
\(354\) −1827.90 727.244i −0.274440 0.109188i
\(355\) 4319.73i 0.645825i
\(356\) −1479.06 + 1564.56i −0.220197 + 0.232925i
\(357\) 412.474 0.0611497
\(358\) −5839.38 2323.24i −0.862070 0.342981i
\(359\) 4027.76i 0.592136i −0.955167 0.296068i \(-0.904325\pi\)
0.955167 0.296068i \(-0.0956755\pi\)
\(360\) 1384.03 642.838i 0.202624 0.0941126i
\(361\) 9225.24 1.34498
\(362\) −4669.11 1857.64i −0.677908 0.269711i
\(363\) 11582.3i 1.67468i
\(364\) 2401.02 2774.27i 0.345736 0.399481i
\(365\) 4927.96i 0.706688i
\(366\) 2749.90 6911.77i 0.392731 0.987114i
\(367\) 2485.79 0.353562 0.176781 0.984250i \(-0.443432\pi\)
0.176781 + 0.984250i \(0.443432\pi\)
\(368\) −268.553 4776.67i −0.0380415 0.676633i
\(369\) 3384.43i 0.477469i
\(370\) 2055.53 5166.49i 0.288816 0.725927i
\(371\) 998.452 0.139723
\(372\) 3559.30 + 3364.81i 0.496078 + 0.468971i
\(373\) 9505.46i 1.31950i 0.751484 + 0.659751i \(0.229338\pi\)
−0.751484 + 0.659751i \(0.770662\pi\)
\(374\) −1058.66 + 2660.89i −0.146369 + 0.367892i
\(375\) 4357.79i 0.600095i
\(376\) 40.1689 + 86.4834i 0.00550945 + 0.0118618i
\(377\) −365.015 8306.58i −0.0498654 1.13478i
\(378\) 276.229 694.290i 0.0375865 0.0944721i
\(379\) 7001.77 0.948963 0.474482 0.880265i \(-0.342636\pi\)
0.474482 + 0.880265i \(0.342636\pi\)
\(380\) 5524.85 + 5222.96i 0.745839 + 0.705085i
\(381\) 3109.50i 0.418123i
\(382\) −2127.01 + 5346.16i −0.284888 + 0.716055i
\(383\) 9798.88i 1.30731i −0.756793 0.653655i \(-0.773235\pi\)
0.756793 0.653655i \(-0.226765\pi\)
\(384\) −3831.25 + 2048.39i −0.509148 + 0.272217i
\(385\) 5283.04i 0.699348i
\(386\) 4871.80 + 1938.28i 0.642404 + 0.255586i
\(387\) 1614.81i 0.212107i
\(388\) 9531.72 10082.7i 1.24716 1.31925i
\(389\) 10473.6i 1.36512i −0.730831 0.682559i \(-0.760867\pi\)
0.730831 0.682559i \(-0.239133\pi\)
\(390\) −2814.93 979.126i −0.365485 0.127128i
\(391\) −1050.42 −0.135862
\(392\) 5074.28 2356.85i 0.653800 0.303670i
\(393\) −5462.90 −0.701188
\(394\) 520.192 1307.48i 0.0665149 0.167183i
\(395\) 1029.39 0.131124
\(396\) 3769.93 + 3563.94i 0.478400 + 0.452259i
\(397\) −8777.00 −1.10958 −0.554792 0.831989i \(-0.687202\pi\)
−0.554792 + 0.831989i \(0.687202\pi\)
\(398\) 3221.08 8096.06i 0.405674 1.01965i
\(399\) 3722.74 0.467093
\(400\) −247.334 4399.27i −0.0309168 0.549908i
\(401\) 1609.88i 0.200483i 0.994963 + 0.100242i \(0.0319616\pi\)
−0.994963 + 0.100242i \(0.968038\pi\)
\(402\) 4707.45 + 1872.90i 0.584045 + 0.232367i
\(403\) −419.946 9556.63i −0.0519082 1.18126i
\(404\) −1318.17 + 1394.36i −0.162330 + 0.171713i
\(405\) −606.976 −0.0744713
\(406\) −1814.81 + 4561.45i −0.221841 + 0.557589i
\(407\) 18903.0 2.30218
\(408\) 401.817 + 865.110i 0.0487571 + 0.104974i
\(409\) 8418.60i 1.01778i −0.860831 0.508891i \(-0.830056\pi\)
0.860831 0.508891i \(-0.169944\pi\)
\(410\) −7405.68 2946.41i −0.892050 0.354909i
\(411\) 1425.83 0.171122
\(412\) −3086.15 2917.51i −0.369038 0.348873i
\(413\) 2268.49i 0.270278i
\(414\) −703.456 + 1768.11i −0.0835096 + 0.209898i
\(415\) −8151.31 −0.964173
\(416\) 8157.65 + 2333.24i 0.961447 + 0.274992i
\(417\) 5167.82 0.606881
\(418\) −9554.79 + 24015.6i −1.11804 + 2.81015i
\(419\) 10178.1i 1.18671i −0.804940 0.593357i \(-0.797802\pi\)
0.804940 0.593357i \(-0.202198\pi\)
\(420\) 1278.74 + 1208.87i 0.148562 + 0.140445i
\(421\) −784.561 −0.0908246 −0.0454123 0.998968i \(-0.514460\pi\)
−0.0454123 + 0.998968i \(0.514460\pi\)
\(422\) −13210.2 5255.80i −1.52385 0.606276i
\(423\) 37.9279i 0.00435962i
\(424\) 972.656 + 2094.12i 0.111406 + 0.239858i
\(425\) −967.430 −0.110417
\(426\) 1808.24 4544.94i 0.205656 0.516909i
\(427\) 8577.74 0.972145
\(428\) −4067.04 + 4302.12i −0.459317 + 0.485866i
\(429\) −444.798 10122.2i −0.0500584 1.13917i
\(430\) 3533.47 + 1405.82i 0.396277 + 0.157662i
\(431\) 580.743i 0.0649035i −0.999473 0.0324517i \(-0.989668\pi\)
0.999473 0.0324517i \(-0.0103315\pi\)
\(432\) 1725.28 96.9980i 0.192147 0.0108028i
\(433\) −10988.6 −1.21958 −0.609788 0.792565i \(-0.708745\pi\)
−0.609788 + 0.792565i \(0.708745\pi\)
\(434\) −2087.92 + 5247.90i −0.230929 + 0.580432i
\(435\) 3987.80 0.439541
\(436\) −6185.50 5847.51i −0.679431 0.642305i
\(437\) −9480.49 −1.03779
\(438\) 2062.84 5184.87i 0.225038 0.565623i
\(439\) −4957.49 −0.538971 −0.269486 0.963004i \(-0.586854\pi\)
−0.269486 + 0.963004i \(0.586854\pi\)
\(440\) −11080.5 + 5146.55i −1.20055 + 0.557618i
\(441\) −2225.36 −0.240294
\(442\) 612.020 1759.52i 0.0658616 0.189348i
\(443\) 3219.87i 0.345328i 0.984981 + 0.172664i \(0.0552376\pi\)
−0.984981 + 0.172664i \(0.944762\pi\)
\(444\) 4325.39 4575.40i 0.462328 0.489051i
\(445\) 2016.71i 0.214834i
\(446\) 13340.1 + 5307.48i 1.41631 + 0.563490i
\(447\) 5655.91i 0.598468i
\(448\) −3827.90 3231.75i −0.403686 0.340817i
\(449\) 6166.53i 0.648144i 0.946032 + 0.324072i \(0.105052\pi\)
−0.946032 + 0.324072i \(0.894948\pi\)
\(450\) −647.876 + 1628.41i −0.0678693 + 0.170587i
\(451\) 27095.6i 2.82901i
\(452\) −670.091 633.475i −0.0697310 0.0659208i
\(453\) −7248.14 −0.751760
\(454\) −1360.11 + 3418.59i −0.140602 + 0.353397i
\(455\) −150.873 3433.39i −0.0155452 0.353758i
\(456\) 3626.56 + 7807.96i 0.372432 + 0.801845i
\(457\) 3680.41i 0.376723i 0.982100 + 0.188361i \(0.0603177\pi\)
−0.982100 + 0.188361i \(0.939682\pi\)
\(458\) 7004.05 17604.4i 0.714580 1.79607i
\(459\) 379.400i 0.0385815i
\(460\) −3256.50 3078.56i −0.330076 0.312040i
\(461\) 17220.4 1.73977 0.869886 0.493252i \(-0.164192\pi\)
0.869886 + 0.493252i \(0.164192\pi\)
\(462\) −2211.48 + 5558.47i −0.222700 + 0.559748i
\(463\) 15319.2i 1.53768i 0.639444 + 0.768838i \(0.279165\pi\)
−0.639444 + 0.768838i \(0.720835\pi\)
\(464\) −11335.0 + 637.273i −1.13408 + 0.0637600i
\(465\) 4587.92 0.457548
\(466\) 4350.33 10934.4i 0.432458 1.08696i
\(467\) 3787.04i 0.375254i −0.982240 0.187627i \(-0.939920\pi\)
0.982240 0.187627i \(-0.0600796\pi\)
\(468\) −2551.82 2208.50i −0.252047 0.218137i
\(469\) 5842.11i 0.575188i
\(470\) 82.9926 + 33.0193i 0.00814502 + 0.00324056i
\(471\) 7280.76 0.712271
\(472\) 4757.85 2209.88i 0.463979 0.215504i
\(473\) 12928.1i 1.25674i
\(474\) 1083.05 + 430.901i 0.104950 + 0.0417551i
\(475\) −8731.44 −0.843423
\(476\) −755.624 + 799.299i −0.0727604 + 0.0769660i
\(477\) 918.393i 0.0881559i
\(478\) 3448.56 + 1372.04i 0.329986 + 0.131288i
\(479\) 10733.6i 1.02386i −0.859027 0.511930i \(-0.828931\pi\)
0.859027 0.511930i \(-0.171069\pi\)
\(480\) −1289.74 + 3859.63i −0.122642 + 0.367015i
\(481\) −12284.8 + 539.832i −1.16453 + 0.0511730i
\(482\) −9356.85 3722.70i −0.884217 0.351793i
\(483\) −2194.28 −0.206715
\(484\) −22444.3 21217.9i −2.10784 1.99266i
\(485\) 12996.5i 1.21679i
\(486\) −638.620 254.080i −0.0596057 0.0237146i
\(487\) 1390.84i 0.129415i −0.997904 0.0647074i \(-0.979389\pi\)
0.997904 0.0647074i \(-0.0206114\pi\)
\(488\) 8356.12 + 17990.7i 0.775131 + 1.66885i
\(489\) 3448.38i 0.318898i
\(490\) 1937.35 4869.46i 0.178614 0.448938i
\(491\) 13956.7i 1.28280i 0.767206 + 0.641401i \(0.221646\pi\)
−0.767206 + 0.641401i \(0.778354\pi\)
\(492\) −6558.40 6200.03i −0.600967 0.568128i
\(493\) 2492.64i 0.227714i
\(494\) 5523.72 15880.3i 0.503085 1.44634i
\(495\) 4859.43 0.441243
\(496\) −13040.8 + 733.175i −1.18054 + 0.0663720i
\(497\) 5640.43 0.509070
\(498\) −8576.27 3412.14i −0.771710 0.307031i
\(499\) 4676.41 0.419529 0.209764 0.977752i \(-0.432730\pi\)
0.209764 + 0.977752i \(0.432730\pi\)
\(500\) −8444.61 7983.18i −0.755309 0.714037i
\(501\) 7068.90 0.630370
\(502\) −16089.0 6401.14i −1.43045 0.569117i
\(503\) 8410.46 0.745534 0.372767 0.927925i \(-0.378409\pi\)
0.372767 + 0.927925i \(0.378409\pi\)
\(504\) 839.376 + 1807.17i 0.0741841 + 0.159718i
\(505\) 1797.33i 0.158376i
\(506\) 5631.86 14155.4i 0.494795 1.24365i
\(507\) 578.139 + 6565.59i 0.0506431 + 0.575125i
\(508\) −6025.66 5696.40i −0.526270 0.497513i
\(509\) 10217.4 0.889745 0.444873 0.895594i \(-0.353249\pi\)
0.444873 + 0.895594i \(0.353249\pi\)
\(510\) 830.190 + 330.298i 0.0720813 + 0.0286781i
\(511\) 6434.60 0.557045
\(512\) 3049.18 11176.8i 0.263196 0.964742i
\(513\) 3424.24i 0.294705i
\(514\) 171.515 431.097i 0.0147183 0.0369939i
\(515\) −3978.03 −0.340375
\(516\) 3129.21 + 2958.22i 0.266969 + 0.252381i
\(517\) 303.650i 0.0258308i
\(518\) 6746.07 + 2683.98i 0.572211 + 0.227659i
\(519\) 9988.87 0.844822
\(520\) 7054.12 3661.12i 0.594891 0.308752i
\(521\) −14540.2 −1.22268 −0.611341 0.791367i \(-0.709370\pi\)
−0.611341 + 0.791367i \(0.709370\pi\)
\(522\) 4195.70 + 1669.29i 0.351803 + 0.139967i
\(523\) 1680.47i 0.140500i 0.997529 + 0.0702502i \(0.0223798\pi\)
−0.997529 + 0.0702502i \(0.977620\pi\)
\(524\) 10007.7 10586.1i 0.834326 0.882550i
\(525\) −2020.91 −0.168000
\(526\) 1435.17 3607.25i 0.118967 0.299018i
\(527\) 2867.76i 0.237043i
\(528\) −13812.5 + 776.564i −1.13847 + 0.0640069i
\(529\) −6578.94 −0.540720
\(530\) 2009.60 + 799.534i 0.164700 + 0.0655274i
\(531\) −2086.59 −0.170528
\(532\) −6819.80 + 7213.99i −0.555782 + 0.587906i
\(533\) 773.798 + 17609.2i 0.0628835 + 1.43103i
\(534\) −844.194 + 2121.85i −0.0684117 + 0.171950i
\(535\) 5545.42i 0.448129i
\(536\) −12253.1 + 5691.17i −0.987409 + 0.458621i
\(537\) −6665.80 −0.535662
\(538\) 9373.26 + 3729.23i 0.751134 + 0.298845i
\(539\) 17816.2 1.42374
\(540\) 1111.94 1176.21i 0.0886114 0.0937332i
\(541\) 11384.5 0.904730 0.452365 0.891833i \(-0.350580\pi\)
0.452365 + 0.891833i \(0.350580\pi\)
\(542\) 11435.1 + 4549.55i 0.906235 + 0.360553i
\(543\) −5329.90 −0.421230
\(544\) −2412.53 806.174i −0.190140 0.0635375i
\(545\) −7973.09 −0.626660
\(546\) 1278.48 3675.55i 0.100209 0.288093i
\(547\) 1662.17i 0.129926i 0.997888 + 0.0649629i \(0.0206929\pi\)
−0.997888 + 0.0649629i \(0.979307\pi\)
\(548\) −2612.03 + 2763.01i −0.203614 + 0.215383i
\(549\) 7889.95i 0.613360i
\(550\) 5186.88 13037.0i 0.402126 1.01073i
\(551\) 22497.1i 1.73940i
\(552\) −2137.59 4602.22i −0.164822 0.354862i
\(553\) 1344.10i 0.103358i
\(554\) −12876.9 5123.18i −0.987523 0.392894i
\(555\) 5897.67i 0.451067i
\(556\) −9467.09 + 10014.3i −0.722112 + 0.763851i
\(557\) 305.728 0.0232569 0.0116285 0.999932i \(-0.496298\pi\)
0.0116285 + 0.999932i \(0.496298\pi\)
\(558\) 4827.11 + 1920.50i 0.366215 + 0.145701i
\(559\) −369.202 8401.86i −0.0279349 0.635708i
\(560\) −4685.13 + 263.407i −0.353541 + 0.0198767i
\(561\) 3037.47i 0.228596i
\(562\) 12686.4 + 5047.40i 0.952216 + 0.378847i
\(563\) 7612.68i 0.569869i 0.958547 + 0.284935i \(0.0919719\pi\)
−0.958547 + 0.284935i \(0.908028\pi\)
\(564\) 73.4975 + 69.4814i 0.00548724 + 0.00518740i
\(565\) −863.745 −0.0643151
\(566\) 15015.4 + 5973.99i 1.11510 + 0.443650i
\(567\) 792.549i 0.0587018i
\(568\) 5494.70 + 11830.1i 0.405902 + 0.873906i
\(569\) −8655.06 −0.637679 −0.318839 0.947809i \(-0.603293\pi\)
−0.318839 + 0.947809i \(0.603293\pi\)
\(570\) 7492.80 + 2981.07i 0.550594 + 0.219058i
\(571\) 13397.0i 0.981872i −0.871196 0.490936i \(-0.836655\pi\)
0.871196 0.490936i \(-0.163345\pi\)
\(572\) 20429.8 + 17681.2i 1.49338 + 1.29246i
\(573\) 6102.76i 0.444933i
\(574\) 3847.23 9669.85i 0.279756 0.703156i
\(575\) 5146.55 0.373262
\(576\) −2972.62 + 3520.96i −0.215033 + 0.254699i
\(577\) 8080.93i 0.583039i 0.956565 + 0.291520i \(0.0941608\pi\)
−0.956565 + 0.291520i \(0.905839\pi\)
\(578\) 4930.56 12392.8i 0.354817 0.891818i
\(579\) 5561.28 0.399169
\(580\) −7305.38 + 7727.63i −0.522999 + 0.553229i
\(581\) 10643.4i 0.760007i
\(582\) 5440.34 13674.1i 0.387473 0.973899i
\(583\) 7352.64i 0.522324i
\(584\) 6268.35 + 13495.7i 0.444155 + 0.956263i
\(585\) −3158.09 + 138.776i −0.223198 + 0.00980799i
\(586\) −9351.06 + 23503.5i −0.659196 + 1.65686i
\(587\) 5614.17 0.394756 0.197378 0.980327i \(-0.436757\pi\)
0.197378 + 0.980327i \(0.436757\pi\)
\(588\) 4076.71 4312.35i 0.285920 0.302446i
\(589\) 25882.6i 1.81066i
\(590\) 1816.54 4565.80i 0.126756 0.318595i
\(591\) 1492.52i 0.103882i
\(592\) 942.481 + 16763.6i 0.0654320 + 1.16382i
\(593\) 25941.9i 1.79647i 0.439517 + 0.898234i \(0.355150\pi\)
−0.439517 + 0.898234i \(0.644850\pi\)
\(594\) 5112.78 + 2034.16i 0.353165 + 0.140509i
\(595\) 1030.29i 0.0709882i
\(596\) −10960.1 10361.2i −0.753262 0.712102i
\(597\) 9241.85i 0.633574i
\(598\) −3255.83 + 9360.30i −0.222643 + 0.640086i
\(599\) 26297.4 1.79379 0.896896 0.442241i \(-0.145816\pi\)
0.896896 + 0.442241i \(0.145816\pi\)
\(600\) −1968.70 4238.60i −0.133953 0.288400i
\(601\) −6750.22 −0.458148 −0.229074 0.973409i \(-0.573570\pi\)
−0.229074 + 0.973409i \(0.573570\pi\)
\(602\) −1835.63 + 4613.78i −0.124277 + 0.312365i
\(603\) 5373.67 0.362907
\(604\) 13278.1 14045.6i 0.894500 0.946203i
\(605\) −28930.6 −1.94413
\(606\) −752.361 + 1891.03i −0.0504333 + 0.126762i
\(607\) 9596.56 0.641700 0.320850 0.947130i \(-0.396031\pi\)
0.320850 + 0.947130i \(0.396031\pi\)
\(608\) −21774.0 7276.04i −1.45239 0.485333i
\(609\) 5207.01i 0.346467i
\(610\) 17264.5 + 6868.82i 1.14593 + 0.455919i
\(611\) −8.67165 197.339i −0.000574169 0.0130663i
\(612\) 735.209 + 695.035i 0.0485606 + 0.0459071i
\(613\) 25871.6 1.70464 0.852319 0.523023i \(-0.175196\pi\)
0.852319 + 0.523023i \(0.175196\pi\)
\(614\) 6861.98 17247.3i 0.451021 1.13362i
\(615\) −8453.76 −0.554290
\(616\) −6720.03 14468.2i −0.439542 0.946331i
\(617\) 16910.5i 1.10339i −0.834047 0.551694i \(-0.813982\pi\)
0.834047 0.551694i \(-0.186018\pi\)
\(618\) −4185.43 1665.21i −0.272431 0.108389i
\(619\) 20847.7 1.35370 0.676849 0.736122i \(-0.263345\pi\)
0.676849 + 0.736122i \(0.263345\pi\)
\(620\) −8404.75 + 8890.56i −0.544424 + 0.575893i
\(621\) 2018.34i 0.130424i
\(622\) 3371.83 8474.97i 0.217361 0.546327i
\(623\) −2633.28 −0.169342
\(624\) 8954.43 899.139i 0.574461 0.0576833i
\(625\) −2279.20 −0.145869
\(626\) −4122.64 + 10362.1i −0.263217 + 0.661585i
\(627\) 27414.4i 1.74613i
\(628\) −13337.8 + 14108.8i −0.847513 + 0.896500i
\(629\) 3686.44 0.233685
\(630\) 1734.23 + 689.976i 0.109672 + 0.0436338i
\(631\) 7426.08i 0.468506i −0.972176 0.234253i \(-0.924736\pi\)
0.972176 0.234253i \(-0.0752645\pi\)
\(632\) −2819.08 + 1309.38i −0.177432 + 0.0824117i
\(633\) −15079.8 −0.946870
\(634\) 1710.49 4299.25i 0.107149 0.269314i
\(635\) −7767.05 −0.485395
\(636\) 1779.68 + 1682.43i 0.110957 + 0.104894i
\(637\) −11578.6 + 508.795i −0.720187 + 0.0316471i
\(638\) −33590.7 13364.3i −2.08443 0.829309i
\(639\) 5188.16i 0.321190i
\(640\) −5116.55 9569.86i −0.316015 0.591065i
\(641\) −12901.9 −0.795002 −0.397501 0.917602i \(-0.630122\pi\)
−0.397501 + 0.917602i \(0.630122\pi\)
\(642\) −2321.31 + 5834.52i −0.142702 + 0.358676i
\(643\) −3893.05 −0.238767 −0.119383 0.992848i \(-0.538092\pi\)
−0.119383 + 0.992848i \(0.538092\pi\)
\(644\) 4019.78 4252.12i 0.245965 0.260182i
\(645\) 4033.54 0.246234
\(646\) −1863.37 + 4683.50i −0.113488 + 0.285247i
\(647\) −8327.09 −0.505984 −0.252992 0.967468i \(-0.581415\pi\)
−0.252992 + 0.967468i \(0.581415\pi\)
\(648\) 1662.27 772.072i 0.100772 0.0468053i
\(649\) 16705.2 1.01038
\(650\) −2998.59 + 8620.75i −0.180945 + 0.520205i
\(651\) 5990.61i 0.360661i
\(652\) 6682.33 + 6317.19i 0.401381 + 0.379449i
\(653\) 17563.3i 1.05254i 0.850319 + 0.526268i \(0.176409\pi\)
−0.850319 + 0.526268i \(0.823591\pi\)
\(654\) −8388.77 3337.54i −0.501570 0.199554i
\(655\) 13645.5i 0.814004i
\(656\) 24029.1 1350.96i 1.43015 0.0804055i
\(657\) 5918.66i 0.351459i
\(658\) −43.1144 + 108.366i −0.00255437 + 0.00642030i
\(659\) 26423.6i 1.56194i 0.624571 + 0.780968i \(0.285274\pi\)
−0.624571 + 0.780968i \(0.714726\pi\)
\(660\) −8902.15 + 9416.70i −0.525024 + 0.555371i
\(661\) 1578.33 0.0928746 0.0464373 0.998921i \(-0.485213\pi\)
0.0464373 + 0.998921i \(0.485213\pi\)
\(662\) 7934.22 19942.4i 0.465819 1.17082i
\(663\) −86.7442 1974.02i −0.00508124 0.115633i
\(664\) 22323.2 10368.5i 1.30468 0.605985i
\(665\) 9298.81i 0.542244i
\(666\) 2468.77 6205.15i 0.143638 0.361028i
\(667\) 13260.4i 0.769782i
\(668\) −12949.7 + 13698.3i −0.750061 + 0.793415i
\(669\) 15228.1 0.880047
\(670\) −4678.20 + 11758.5i −0.269753 + 0.678014i
\(671\) 63166.8i 3.63417i
\(672\) −5039.65 1684.06i −0.289299 0.0966725i
\(673\) 27226.4 1.55943 0.779717 0.626132i \(-0.215363\pi\)
0.779717 + 0.626132i \(0.215363\pi\)
\(674\) 2448.20 6153.45i 0.139913 0.351665i
\(675\) 1858.87i 0.105997i
\(676\) −13782.0 10907.4i −0.784140 0.620584i
\(677\) 5715.23i 0.324452i 0.986754 + 0.162226i \(0.0518674\pi\)
−0.986754 + 0.162226i \(0.948133\pi\)
\(678\) −908.776 361.564i −0.0514769 0.0204805i
\(679\) 16970.0 0.959130
\(680\) −2160.91 + 1003.68i −0.121863 + 0.0566018i
\(681\) 3902.40i 0.219590i
\(682\) −38645.7 15375.5i −2.16983 0.863283i
\(683\) −20426.9 −1.14438 −0.572191 0.820120i \(-0.693906\pi\)
−0.572191 + 0.820120i \(0.693906\pi\)
\(684\) 6635.55 + 6272.97i 0.370931 + 0.350662i
\(685\) 3561.51i 0.198654i
\(686\) 15178.3 + 6038.80i 0.844766 + 0.336097i
\(687\) 20095.8i 1.11602i
\(688\) −11465.0 + 644.583i −0.635318 + 0.0357187i
\(689\) −209.977 4778.40i −0.0116103 0.264213i
\(690\) −4416.46 1757.12i −0.243669 0.0969457i
\(691\) −18026.4 −0.992413 −0.496207 0.868204i \(-0.665274\pi\)
−0.496207 + 0.868204i \(0.665274\pi\)
\(692\) −18298.9 + 19356.6i −1.00523 + 1.06334i
\(693\) 6345.13i 0.347809i
\(694\) −6057.82 2410.15i −0.331342 0.131827i
\(695\) 12908.4i 0.704523i
\(696\) −10921.0 + 5072.48i −0.594771 + 0.276253i
\(697\) 5284.17i 0.287162i
\(698\) −5634.15 + 14161.2i −0.305524 + 0.767922i
\(699\) 12481.9i 0.675404i
\(700\) 3702.17 3916.16i 0.199899 0.211453i
\(701\) 15181.2i 0.817955i −0.912544 0.408978i \(-0.865885\pi\)
0.912544 0.408978i \(-0.134115\pi\)
\(702\) −3380.83 1175.97i −0.181768 0.0632251i
\(703\) 33271.6 1.78501
\(704\) 23798.7 28188.8i 1.27407 1.50910i
\(705\) 94.7380 0.00506105
\(706\) 2334.38 + 928.753i 0.124441 + 0.0495100i
\(707\) −2346.83 −0.124840
\(708\) 3822.49 4043.43i 0.202907 0.214635i
\(709\) −15371.5 −0.814228 −0.407114 0.913377i \(-0.633465\pi\)
−0.407114 + 0.913377i \(0.633465\pi\)
\(710\) 11352.5 + 4516.70i 0.600075 + 0.238745i
\(711\) 1236.33 0.0652123
\(712\) −2565.25 5522.97i −0.135024 0.290705i
\(713\) 15255.9i 0.801317i
\(714\) −431.281 + 1084.01i −0.0226055 + 0.0568179i
\(715\) 25283.6 1111.04i 1.32245 0.0581124i
\(716\) 12211.3 12917.1i 0.637370 0.674211i
\(717\) 3936.61 0.205043
\(718\) 10585.2 + 4211.41i 0.550190 + 0.218897i
\(719\) −15590.7 −0.808670 −0.404335 0.914611i \(-0.632497\pi\)
−0.404335 + 0.914611i \(0.632497\pi\)
\(720\) 242.286 + 4309.47i 0.0125409 + 0.223062i
\(721\) 5194.26i 0.268300i
\(722\) −9645.88 + 24244.5i −0.497206 + 1.24971i
\(723\) −10681.1 −0.549423
\(724\) 9764.01 10328.4i 0.501211 0.530181i
\(725\) 12212.7i 0.625611i
\(726\) −30438.9 12110.4i −1.55605 0.619088i
\(727\) −22081.0 −1.12646 −0.563231 0.826299i \(-0.690442\pi\)
−0.563231 + 0.826299i \(0.690442\pi\)
\(728\) 4780.45 + 9210.81i 0.243373 + 0.468922i
\(729\) −729.000 −0.0370370
\(730\) 12951.0 + 5152.65i 0.656627 + 0.261244i
\(731\) 2521.24i 0.127567i
\(732\) 15289.3 + 14453.8i 0.772006 + 0.729821i
\(733\) −5519.68 −0.278136 −0.139068 0.990283i \(-0.544411\pi\)
−0.139068 + 0.990283i \(0.544411\pi\)
\(734\) −2599.14 + 6532.83i −0.130703 + 0.328516i
\(735\) 5558.60i 0.278955i
\(736\) 12834.2 + 4288.69i 0.642764 + 0.214787i
\(737\) −43021.5 −2.15023
\(738\) −8894.49 3538.74i −0.443646 0.176508i
\(739\) 14356.2 0.714617 0.357309 0.933986i \(-0.383694\pi\)
0.357309 + 0.933986i \(0.383694\pi\)
\(740\) 11428.6 + 10804.1i 0.567736 + 0.536713i
\(741\) −782.900 17816.3i −0.0388132 0.883264i
\(742\) −1043.98 + 2624.00i −0.0516518 + 0.129825i
\(743\) 9478.13i 0.467993i −0.972237 0.233996i \(-0.924820\pi\)
0.972237 0.233996i \(-0.0751804\pi\)
\(744\) −12564.5 + 5835.83i −0.619137 + 0.287570i
\(745\) −14127.6 −0.694757
\(746\) −24981.0 9938.88i −1.22603 0.487786i
\(747\) −9790.02 −0.479515
\(748\) −5886.07 5564.44i −0.287722 0.272000i
\(749\) −7240.84 −0.353237
\(750\) −11452.6 4556.50i −0.557585 0.221840i
\(751\) −26690.4 −1.29686 −0.648432 0.761273i \(-0.724575\pi\)
−0.648432 + 0.761273i \(0.724575\pi\)
\(752\) −269.285 + 15.1397i −0.0130582 + 0.000734158i
\(753\) −18366.0 −0.888837
\(754\) 22211.9 + 7726.05i 1.07282 + 0.373165i
\(755\) 18104.7i 0.872712i
\(756\) 1535.82 + 1451.90i 0.0738850 + 0.0698478i
\(757\) 21871.3i 1.05010i 0.851071 + 0.525050i \(0.175953\pi\)
−0.851071 + 0.525050i \(0.824047\pi\)
\(758\) −7321.03 + 18401.1i −0.350807 + 0.881740i
\(759\) 16158.8i 0.772762i
\(760\) −19503.1 + 9058.57i −0.930855 + 0.432354i
\(761\) 19183.4i 0.913796i −0.889519 0.456898i \(-0.848960\pi\)
0.889519 0.456898i \(-0.151040\pi\)
\(762\) −8171.98 3251.29i −0.388504 0.154569i
\(763\) 10410.7i 0.493964i
\(764\) −11826.0 11179.8i −0.560015 0.529414i
\(765\) 947.682 0.0447889
\(766\) 25752.1 + 10245.7i 1.21470 + 0.483278i
\(767\) −10856.5 + 477.067i −0.511091 + 0.0224588i
\(768\) −1377.35 12210.6i −0.0647148 0.573712i
\(769\) 2171.49i 0.101828i −0.998703 0.0509141i \(-0.983787\pi\)
0.998703 0.0509141i \(-0.0162135\pi\)
\(770\) −13884.2 5523.93i −0.649807 0.258531i
\(771\) 492.107i 0.0229868i
\(772\) −10187.9 + 10776.7i −0.474961 + 0.502414i
\(773\) −6860.28 −0.319207 −0.159603 0.987181i \(-0.551022\pi\)
−0.159603 + 0.987181i \(0.551022\pi\)
\(774\) 4243.83 + 1688.44i 0.197082 + 0.0784106i
\(775\) 14050.6i 0.651240i
\(776\) 16531.6 + 35592.4i 0.764753 + 1.64651i
\(777\) 7700.80 0.355553
\(778\) 27525.2 + 10951.1i 1.26841 + 0.504649i
\(779\) 47691.7i 2.19349i
\(780\) 5516.49 6374.04i 0.253233 0.292599i
\(781\) 41536.3i 1.90305i
\(782\) 1098.32 2760.58i 0.0502248 0.126238i
\(783\) 4789.50 0.218598
\(784\) 888.295 + 15799.8i 0.0404654 + 0.719745i
\(785\) 18186.2i 0.826870i
\(786\) 5711.99 14356.9i 0.259211 0.651517i
\(787\) −18310.8 −0.829366 −0.414683 0.909966i \(-0.636107\pi\)
−0.414683 + 0.909966i \(0.636107\pi\)
\(788\) 2892.24 + 2734.20i 0.130751 + 0.123606i
\(789\) 4117.76i 0.185800i
\(790\) −1076.32 + 2705.29i −0.0484732 + 0.121835i
\(791\) 1127.82i 0.0506963i
\(792\) −13308.1 + 6181.19i −0.597074 + 0.277322i
\(793\) −1803.92 41051.4i −0.0807805 1.83831i
\(794\) 9177.20 23066.5i 0.410185 1.03098i
\(795\) 2294.00 0.102339
\(796\) 17909.0 + 16930.4i 0.797448 + 0.753874i
\(797\) 34492.7i 1.53299i −0.642249 0.766496i \(-0.721998\pi\)
0.642249 0.766496i \(-0.278002\pi\)
\(798\) −3892.48 + 9783.60i −0.172672 + 0.434005i
\(799\) 59.2176i 0.00262199i
\(800\) 11820.2 + 3949.85i 0.522383 + 0.174560i
\(801\) 2422.14i 0.106844i
\(802\) −4230.88 1683.29i −0.186281 0.0741135i
\(803\) 47384.6i 2.08240i
\(804\) −9844.19 + 10413.2i −0.431813 + 0.456772i
\(805\) 5480.97i 0.239974i
\(806\) 25554.5 + 8888.73i 1.11677 + 0.388452i
\(807\) 10699.8 0.466730
\(808\) −2286.20 4922.17i −0.0995398 0.214309i
\(809\) 33909.8 1.47368 0.736839 0.676069i \(-0.236318\pi\)
0.736839 + 0.676069i \(0.236318\pi\)
\(810\) 634.652 1595.17i 0.0275301 0.0691958i
\(811\) −22972.6 −0.994668 −0.497334 0.867559i \(-0.665688\pi\)
−0.497334 + 0.867559i \(0.665688\pi\)
\(812\) −10090.2 9538.88i −0.436081 0.412253i
\(813\) 13053.4 0.563105
\(814\) −19764.9 + 49678.3i −0.851055 + 2.13909i
\(815\) 8613.51 0.370206
\(816\) −2693.70 + 151.445i −0.115562 + 0.00649710i
\(817\) 22755.1i 0.974421i
\(818\) 22124.6 + 8802.46i 0.945684 + 0.376248i
\(819\) −181.204 4123.63i −0.00773113 0.175936i
\(820\) 15486.7 16381.9i 0.659536 0.697658i
\(821\) −17293.0 −0.735115 −0.367558 0.930001i \(-0.619806\pi\)
−0.367558 + 0.930001i \(0.619806\pi\)
\(822\) −1490.85 + 3747.18i −0.0632594 + 0.159000i
\(823\) −3515.45 −0.148895 −0.0744477 0.997225i \(-0.523719\pi\)
−0.0744477 + 0.997225i \(0.523719\pi\)
\(824\) 10894.3 5060.06i 0.460583 0.213926i
\(825\) 14882.1i 0.628033i
\(826\) 5961.73 + 2371.92i 0.251132 + 0.0999149i
\(827\) −16950.3 −0.712720 −0.356360 0.934349i \(-0.615982\pi\)
−0.356360 + 0.934349i \(0.615982\pi\)
\(828\) −3911.17 3697.46i −0.164158 0.155188i
\(829\) 15610.6i 0.654013i 0.945022 + 0.327007i \(0.106040\pi\)
−0.945022 + 0.327007i \(0.893960\pi\)
\(830\) 8522.98 21422.2i 0.356430 0.895872i
\(831\) −14699.3 −0.613614
\(832\) −14661.5 + 18999.2i −0.610934 + 0.791682i
\(833\) 3474.50 0.144519
\(834\) −5403.46 + 13581.4i −0.224348 + 0.563890i
\(835\) 17657.0i 0.731791i
\(836\) −53124.1 50221.3i −2.19777 2.07768i
\(837\) 5510.26 0.227554
\(838\) 26748.7 + 10642.2i 1.10265 + 0.438698i
\(839\) 9644.64i 0.396865i 0.980115 + 0.198433i \(0.0635851\pi\)
−0.980115 + 0.198433i \(0.936415\pi\)
\(840\) −4514.03 + 2096.63i −0.185415 + 0.0861197i
\(841\) −7077.76 −0.290203
\(842\) 820.334 2061.88i 0.0335755 0.0843907i
\(843\) 14481.9 0.591676
\(844\) 27625.2 29221.9i 1.12666 1.19178i
\(845\) −16399.8 + 1444.10i −0.667658 + 0.0587912i
\(846\) 99.6771 + 39.6573i 0.00405079 + 0.00161164i
\(847\) 37775.7i 1.53246i
\(848\) −6520.50 + 366.594i −0.264051 + 0.0148454i
\(849\) 17140.4 0.692884
\(850\) 1011.54 2542.47i 0.0408183 0.102595i
\(851\) −19611.2 −0.789968
\(852\) 10053.7 + 9504.35i 0.404266 + 0.382176i
\(853\) 6268.45 0.251615 0.125808 0.992055i \(-0.459848\pi\)
0.125808 + 0.992055i \(0.459848\pi\)
\(854\) −8968.85 + 22542.9i −0.359377 + 0.903279i
\(855\) 8553.21 0.342121
\(856\) −7053.76 15186.7i −0.281650 0.606392i
\(857\) 21936.5 0.874372 0.437186 0.899371i \(-0.355975\pi\)
0.437186 + 0.899371i \(0.355975\pi\)
\(858\) 27066.8 + 9414.77i 1.07698 + 0.374609i
\(859\) 16932.2i 0.672549i −0.941764 0.336274i \(-0.890833\pi\)
0.941764 0.336274i \(-0.109167\pi\)
\(860\) −7389.18 + 7816.28i −0.292987 + 0.309922i
\(861\) 11038.4i 0.436918i
\(862\) 1526.23 + 607.223i 0.0603058 + 0.0239932i
\(863\) 38618.2i 1.52327i −0.648008 0.761634i \(-0.724398\pi\)
0.648008 0.761634i \(-0.275602\pi\)
\(864\) −1549.03 + 4635.56i −0.0609941 + 0.182529i
\(865\) 24950.6i 0.980747i
\(866\) 11489.6 28878.6i 0.450846 1.13318i
\(867\) 14146.6i 0.554146i
\(868\) −11608.7 10974.4i −0.453946 0.429141i
\(869\) −9898.03 −0.386384
\(870\) −4169.63 + 10480.2i −0.162487 + 0.408405i
\(871\) 27959.2 1228.61i 1.08767 0.0477954i
\(872\) 21835.2 10141.8i 0.847973 0.393857i
\(873\) 15609.3i 0.605149i
\(874\) 9912.77 24915.3i 0.383643 0.964272i
\(875\) 14213.0i 0.549129i
\(876\) 11469.3 + 10842.6i 0.442364 + 0.418192i
\(877\) 28880.1 1.11199 0.555994 0.831186i \(-0.312338\pi\)
0.555994 + 0.831186i \(0.312338\pi\)
\(878\) 5183.54 13028.6i 0.199244 0.500791i
\(879\) 26829.8i 1.02952i
\(880\) −1939.73 34501.5i −0.0743051 1.32164i
\(881\) 10648.9 0.407230 0.203615 0.979051i \(-0.434731\pi\)
0.203615 + 0.979051i \(0.434731\pi\)
\(882\) 2326.83 5848.40i 0.0888305 0.223272i
\(883\) 19439.7i 0.740880i 0.928856 + 0.370440i \(0.120793\pi\)
−0.928856 + 0.370440i \(0.879207\pi\)
\(884\) 3984.20 + 3448.17i 0.151587 + 0.131193i
\(885\) 5211.97i 0.197965i
\(886\) −8462.02 3366.68i −0.320866 0.127659i
\(887\) 4384.57 0.165975 0.0829873 0.996551i \(-0.473554\pi\)
0.0829873 + 0.996551i \(0.473554\pi\)
\(888\) 7501.84 + 16151.4i 0.283497 + 0.610367i
\(889\) 10141.7i 0.382612i
\(890\) −5300.04 2108.66i −0.199615 0.0794186i
\(891\) 5836.36 0.219445
\(892\) −27896.8 + 29509.3i −1.04715 + 1.10767i
\(893\) 534.462i 0.0200281i
\(894\) −14864.1 5913.80i −0.556073 0.221238i
\(895\) 16650.1i 0.621845i
\(896\) 12495.7 6680.85i 0.465906 0.249098i
\(897\) 461.463 + 10501.4i 0.0171770 + 0.390894i
\(898\) −16206.0 6447.70i −0.602230 0.239602i
\(899\) −36202.2 −1.34306
\(900\) −3602.15 3405.32i −0.133413 0.126123i
\(901\) 1433.90i 0.0530192i
\(902\) 71209.1 + 28331.1i 2.62861 + 1.04581i
\(903\) 5266.74i 0.194093i
\(904\) 2365.46 1098.68i 0.0870288 0.0404222i
\(905\) 13313.2i 0.489002i
\(906\) 7578.63 19048.6i 0.277906 0.698506i
\(907\) 10424.1i 0.381618i −0.981627 0.190809i \(-0.938889\pi\)
0.981627 0.190809i \(-0.0611111\pi\)
\(908\) −7562.15 7148.93i −0.276386 0.261284i
\(909\) 2158.65i 0.0787657i
\(910\) 9180.93 + 3193.44i 0.334445 + 0.116331i
\(911\) 2959.87 0.107645 0.0538227 0.998551i \(-0.482859\pi\)
0.0538227 + 0.998551i \(0.482859\pi\)
\(912\) −24311.7 + 1366.85i −0.882722 + 0.0496282i
\(913\) 78378.7 2.84113
\(914\) −9672.36 3848.23i −0.350036 0.139265i
\(915\) 19707.8 0.712045
\(916\) 38942.1 + 36814.2i 1.40468 + 1.32792i
\(917\) 17817.4 0.641637
\(918\) 997.089 + 396.700i 0.0358484 + 0.0142626i
\(919\) −43513.0 −1.56187 −0.780936 0.624611i \(-0.785257\pi\)
−0.780936 + 0.624611i \(0.785257\pi\)
\(920\) 11495.6 5339.36i 0.411956 0.191341i
\(921\) 19688.2i 0.704396i
\(922\) −18005.6 + 45256.4i −0.643149 + 1.61653i
\(923\) −1186.19 26994.0i −0.0423013 0.962641i
\(924\) −12295.7 11623.8i −0.437770 0.413849i
\(925\) −18061.7 −0.642016
\(926\) −40259.9 16017.7i −1.42875 0.568439i
\(927\) −4777.77 −0.169280
\(928\) 10177.0 30455.4i 0.359997 1.07731i
\(929\) 3863.45i 0.136443i 0.997670 + 0.0682216i \(0.0217325\pi\)
−0.997670 + 0.0682216i \(0.978268\pi\)
\(930\) −4797.12 + 12057.4i −0.169144 + 0.425136i
\(931\) 31358.7 1.10391
\(932\) 24187.6 + 22865.9i 0.850097 + 0.803646i
\(933\) 9674.38i 0.339470i
\(934\) 9952.60 + 3959.72i 0.348671 + 0.138722i
\(935\) −7587.12 −0.265375
\(936\) 8472.26 4397.14i 0.295859 0.153552i
\(937\) 20376.0 0.710411 0.355206 0.934788i \(-0.384411\pi\)
0.355206 + 0.934788i \(0.384411\pi\)
\(938\) −15353.4 6108.49i −0.534443 0.212632i
\(939\) 11828.6i 0.411087i
\(940\) −173.554 + 183.585i −0.00602201 + 0.00637009i
\(941\) −5420.31 −0.187776 −0.0938880 0.995583i \(-0.529930\pi\)
−0.0938880 + 0.995583i \(0.529930\pi\)
\(942\) −7612.74 + 19134.3i −0.263308 + 0.661815i
\(943\) 28110.8i 0.970745i
\(944\) 832.902 + 14814.6i 0.0287168 + 0.510777i
\(945\) 1979.66 0.0681465
\(946\) −33976.0 13517.6i −1.16771 0.464584i
\(947\) 22573.3 0.774587 0.387294 0.921956i \(-0.373410\pi\)
0.387294 + 0.921956i \(0.373410\pi\)
\(948\) −2264.87 + 2395.78i −0.0775945 + 0.0820795i
\(949\) −1353.21 30794.8i −0.0462878 1.05336i
\(950\) 9129.56 22946.8i 0.311792 0.783676i
\(951\) 4907.70i 0.167343i
\(952\) −1310.53 2821.57i −0.0446162 0.0960585i
\(953\) −18646.7 −0.633815 −0.316908 0.948456i \(-0.602645\pi\)
−0.316908 + 0.948456i \(0.602645\pi\)
\(954\) 2413.60 + 960.269i 0.0819110 + 0.0325890i
\(955\) −15243.7 −0.516519
\(956\) −7211.60 + 7628.44i −0.243975 + 0.258077i
\(957\) −38344.6 −1.29520
\(958\) 28208.5 + 11223.0i 0.951332 + 0.378495i
\(959\) −4650.38 −0.156589
\(960\) −8794.81 7425.14i −0.295678 0.249630i
\(961\) −11859.2 −0.398080
\(962\) 11426.3 32849.8i 0.382950 1.10096i
\(963\) 6660.25i 0.222870i
\(964\) 19567.0 20698.0i 0.653745 0.691532i
\(965\) 13891.2i 0.463392i
\(966\) 2294.34 5766.72i 0.0764172 0.192072i
\(967\) 6736.17i 0.224013i −0.993707 0.112007i \(-0.964272\pi\)
0.993707 0.112007i \(-0.0357278\pi\)
\(968\) 79229.7 36799.7i 2.63072 1.22189i
\(969\) 5346.33i 0.177243i
\(970\) 34155.7 + 13589.1i 1.13059 + 0.449815i
\(971\) 4629.21i 0.152995i −0.997070 0.0764977i \(-0.975626\pi\)
0.997070 0.0764977i \(-0.0243738\pi\)
\(972\) 1335.48 1412.67i 0.0440694 0.0466167i
\(973\) −16854.9 −0.555339
\(974\) 3655.22 + 1454.26i 0.120247 + 0.0478413i
\(975\) 425.003 + 9671.70i 0.0139600 + 0.317684i
\(976\) −56017.8 + 3149.42i −1.83718 + 0.103289i
\(977\) 22621.5i 0.740764i 0.928879 + 0.370382i \(0.120773\pi\)
−0.928879 + 0.370382i \(0.879227\pi\)
\(978\) 9062.57 + 3605.62i 0.296308 + 0.117888i
\(979\) 19391.6i 0.633052i
\(980\) 10771.6 + 10183.0i 0.351107 + 0.331922i
\(981\) −9575.98 −0.311659
\(982\) −36679.0 14593.0i −1.19193 0.474219i
\(983\) 48294.1i 1.56698i −0.621404 0.783491i \(-0.713437\pi\)
0.621404 0.783491i \(-0.286563\pi\)
\(984\) 23151.5 10753.2i 0.750045 0.348373i
\(985\) 3728.08 0.120596
\(986\) −6550.83 2606.30i −0.211583 0.0841800i
\(987\) 123.703i 0.00398936i
\(988\) 35959.0 + 31121.1i 1.15790 + 1.00212i
\(989\) 13412.5i 0.431236i
\(990\) −5081.01 + 12770.9i −0.163116 + 0.409986i
\(991\) 24859.7 0.796866 0.398433 0.917197i \(-0.369554\pi\)
0.398433 + 0.917197i \(0.369554\pi\)
\(992\) 11708.6 35038.6i 0.374745 1.12145i
\(993\) 22764.7i 0.727508i
\(994\) −5897.61 + 14823.4i −0.188190 + 0.473008i
\(995\) 23084.7 0.735511
\(996\) 17934.6 18971.3i 0.570563 0.603542i
\(997\) 45423.7i 1.44291i −0.692460 0.721456i \(-0.743473\pi\)
0.692460 0.721456i \(-0.256527\pi\)
\(998\) −4889.64 + 12289.9i −0.155089 + 0.389810i
\(999\) 7083.32i 0.224331i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.m.a.181.32 yes 84
4.3 odd 2 1248.4.m.a.337.41 84
8.3 odd 2 1248.4.m.a.337.44 84
8.5 even 2 inner 312.4.m.a.181.54 yes 84
13.12 even 2 inner 312.4.m.a.181.53 yes 84
52.51 odd 2 1248.4.m.a.337.42 84
104.51 odd 2 1248.4.m.a.337.43 84
104.77 even 2 inner 312.4.m.a.181.31 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.m.a.181.31 84 104.77 even 2 inner
312.4.m.a.181.32 yes 84 1.1 even 1 trivial
312.4.m.a.181.53 yes 84 13.12 even 2 inner
312.4.m.a.181.54 yes 84 8.5 even 2 inner
1248.4.m.a.337.41 84 4.3 odd 2
1248.4.m.a.337.42 84 52.51 odd 2
1248.4.m.a.337.43 84 104.51 odd 2
1248.4.m.a.337.44 84 8.3 odd 2