Properties

Label 3132.1.o
Level 31323132
Weight 11
Character orbit 3132.o
Rep. character χ3132(1855,)\chi_{3132}(1855,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 1212
Newform subspaces 22
Sturm bound 540540
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3132=223329 3132 = 2^{2} \cdot 3^{3} \cdot 29
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3132.o (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 1044 1044
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 2 2
Sturm bound: 540540
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M1(3132,[χ])M_{1}(3132, [\chi]).

Total New Old
Modular forms 60 20 40
Cusp forms 36 12 24
Eisenstein series 24 8 16

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 12 0 0 0

Trace form

12q6q46q166q25+6q296q386q49+12q646q65+O(q100) 12 q - 6 q^{4} - 6 q^{16} - 6 q^{25} + 6 q^{29} - 6 q^{38} - 6 q^{49} + 12 q^{64} - 6 q^{65}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(3132,[χ])S_{1}^{\mathrm{new}}(3132, [\chi]) into newform subspaces

Label Char Prim Dim AA Field Image CM RM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
3132.1.o.a 3132.o 1044.o 66 1.5631.563 Q(ζ18)\Q(\zeta_{18}) D9D_{9} Q(29)\Q(\sqrt{-29}) None 1044.1.o.a 3-3 00 00 00 q+ζ186q2ζ183q4+(ζ182ζ184+)q5+q+\zeta_{18}^{6}q^{2}-\zeta_{18}^{3}q^{4}+(-\zeta_{18}^{2}-\zeta_{18}^{4}+\cdots)q^{5}+\cdots
3132.1.o.b 3132.o 1044.o 66 1.5631.563 Q(ζ18)\Q(\zeta_{18}) D9D_{9} Q(29)\Q(\sqrt{-29}) None 1044.1.o.a 33 00 00 00 qζ186q2ζ183q4+(ζ182ζ184+)q5+q-\zeta_{18}^{6}q^{2}-\zeta_{18}^{3}q^{4}+(-\zeta_{18}^{2}-\zeta_{18}^{4}+\cdots)q^{5}+\cdots

Decomposition of S1old(3132,[χ])S_{1}^{\mathrm{old}}(3132, [\chi]) into lower level spaces

S1old(3132,[χ]) S_{1}^{\mathrm{old}}(3132, [\chi]) \simeq S1new(1044,[χ])S_{1}^{\mathrm{new}}(1044, [\chi])2^{\oplus 2}