Properties

Label 315.2.d
Level $315$
Weight $2$
Character orbit 315.d
Rep. character $\chi_{315}(64,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $5$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(11\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(315, [\chi])\).

Total New Old
Modular forms 56 14 42
Cusp forms 40 14 26
Eisenstein series 16 0 16

Trace form

\( 14 q - 8 q^{4} - 8 q^{10} + 6 q^{11} - 4 q^{14} + 12 q^{16} + 20 q^{20} + 10 q^{25} - 28 q^{26} - 10 q^{29} - 28 q^{31} - 4 q^{34} - 2 q^{35} + 4 q^{40} - 12 q^{41} + 20 q^{44} + 8 q^{46} - 14 q^{49} + 24 q^{50}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
315.2.d.a 315.d 5.b $2$ $2.515$ \(\Q(\sqrt{-1}) \) None 35.2.b.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}-2 q^{4}+(-i+2)q^{5}+i q^{7}+\cdots\)
315.2.d.b 315.d 5.b $2$ $2.515$ \(\Q(\sqrt{-1}) \) None 315.2.d.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}+(i-2)q^{5}+i q^{7}+\cdots\)
315.2.d.c 315.d 5.b $2$ $2.515$ \(\Q(\sqrt{-1}) \) None 105.2.d.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}+(-2 i-1)q^{5}-i q^{7}+\cdots\)
315.2.d.d 315.d 5.b $2$ $2.515$ \(\Q(\sqrt{-1}) \) None 315.2.d.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}+(i+2)q^{5}-i q^{7}+\cdots\)
315.2.d.e 315.d 5.b $6$ $2.515$ 6.0.350464.1 None 105.2.d.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(-1+\beta _{3}+\beta _{5})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)