Defining parameters
Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 315.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(11\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(315, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 14 | 42 |
Cusp forms | 40 | 14 | 26 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(315, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
315.2.d.a | $2$ | $2.515$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+2 i q^{2}-2 q^{4}+(-i+2)q^{5}+i q^{7}+\cdots\) |
315.2.d.b | $2$ | $2.515$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+i q^{2}+q^{4}+(i-2)q^{5}+i q^{7}+\cdots\) |
315.2.d.c | $2$ | $2.515$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+i q^{2}+q^{4}+(-2 i-1)q^{5}-i q^{7}+\cdots\) |
315.2.d.d | $2$ | $2.515$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+i q^{2}+q^{4}+(i+2)q^{5}-i q^{7}+\cdots\) |
315.2.d.e | $6$ | $2.515$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q-\beta _{1}q^{2}+(-1+\beta _{3}+\beta _{5})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(315, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)