Properties

Label 315.4.p
Level $315$
Weight $4$
Character orbit 315.p
Rep. character $\chi_{315}(118,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $116$
Sturm bound $192$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.p (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(i)\)
Sturm bound: \(192\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(315, [\chi])\).

Total New Old
Modular forms 304 124 180
Cusp forms 272 116 156
Eisenstein series 32 8 24

Trace form

\( 116 q + 4 q^{2} + 14 q^{7} + 56 q^{8} - 56 q^{11} - 1784 q^{16} - 228 q^{22} - 92 q^{23} - 156 q^{25} + 48 q^{28} + 912 q^{32} - 482 q^{35} + 548 q^{37} - 100 q^{43} - 912 q^{46} - 2828 q^{50} + 308 q^{53}+ \cdots - 204 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)