Properties

Label 315.6.ce
Level $315$
Weight $6$
Character orbit 315.ce
Rep. character $\chi_{315}(53,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $320$
Sturm bound $288$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(288\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(315, [\chi])\).

Total New Old
Modular forms 992 320 672
Cusp forms 928 320 608
Eisenstein series 64 0 64

Trace form

\( 320 q - 152 q^{7} - 992 q^{10} + 40960 q^{16} - 13248 q^{22} + 5104 q^{25} + 37568 q^{28} - 38240 q^{31} + 26224 q^{37} - 59240 q^{40} - 27536 q^{43} + 203120 q^{52} - 291232 q^{55} - 62288 q^{58} - 69360 q^{61}+ \cdots + 690128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)