Properties

Label 3150.2.db
Level 31503150
Weight 22
Character orbit 3150.db
Rep. character χ3150(89,)\chi_{3150}(89,\cdot)
Character field Q(ζ30)\Q(\zeta_{30})
Dimension 640640
Sturm bound 14401440

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3150=232527 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3150.db (of order 3030 and degree 88)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 525 525
Character field: Q(ζ30)\Q(\zeta_{30})
Sturm bound: 14401440

Dimensions

The following table gives the dimensions of various subspaces of M2(3150,[χ])M_{2}(3150, [\chi]).

Total New Old
Modular forms 5888 640 5248
Cusp forms 5632 640 4992
Eisenstein series 256 0 256

Trace form

640q+80q412q10+80q1680q22+12q2520q28+36q31+12q4024q46+8q49160q6412q70240q738q7948q85+20q88+104q91++96q94+O(q100) 640 q + 80 q^{4} - 12 q^{10} + 80 q^{16} - 80 q^{22} + 12 q^{25} - 20 q^{28} + 36 q^{31} + 12 q^{40} - 24 q^{46} + 8 q^{49} - 160 q^{64} - 12 q^{70} - 240 q^{73} - 8 q^{79} - 48 q^{85} + 20 q^{88} + 104 q^{91}+ \cdots + 96 q^{94}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3150,[χ])S_{2}^{\mathrm{new}}(3150, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3150,[χ])S_{2}^{\mathrm{old}}(3150, [\chi]) into lower level spaces

S2old(3150,[χ]) S_{2}^{\mathrm{old}}(3150, [\chi]) \simeq S2new(525,[χ])S_{2}^{\mathrm{new}}(525, [\chi])4^{\oplus 4}\oplusS2new(1050,[χ])S_{2}^{\mathrm{new}}(1050, [\chi])2^{\oplus 2}\oplusS2new(1575,[χ])S_{2}^{\mathrm{new}}(1575, [\chi])2^{\oplus 2}