Properties

Label 3168.2.ed
Level $3168$
Weight $2$
Character orbit 3168.ed
Rep. character $\chi_{3168}(179,\cdot)$
Character field $\Q(\zeta_{40})$
Dimension $3072$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.ed (of order \(40\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1056 \)
Character field: \(\Q(\zeta_{40})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3168, [\chi])\).

Total New Old
Modular forms 9344 3072 6272
Cusp forms 9088 3072 6016
Eisenstein series 256 0 256

Trace form

\( 3072 q - 32 q^{16} - 32 q^{22} + 128 q^{46} + 224 q^{52} + 64 q^{55} - 288 q^{64} + 64 q^{67} + 96 q^{70} - 80 q^{88} - 288 q^{91} - 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3168, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3168, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3168, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1056, [\chi])\)\(^{\oplus 2}\)