Defining parameters
Level: | \( N \) | \(=\) | \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3168.r (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 176 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3168, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1184 | 0 | 1184 |
Cusp forms | 1120 | 0 | 1120 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{old}}(3168, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3168, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(528, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1584, [\chi])\)\(^{\oplus 2}\)