Properties

Label 31737.2.a.a
Level $31737$
Weight $2$
Character orbit 31737.a
Self dual yes
Analytic conductor $253.421$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [31737,2,Mod(1,31737)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(31737, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("31737.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 31737 = 3 \cdot 71 \cdot 149 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 31737.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(253.421220895\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} - 4 q^{7} + q^{9} + 4 q^{10} - 5 q^{11} - 2 q^{12} - 6 q^{13} + 8 q^{14} + 2 q^{15} - 4 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{19} - 4 q^{20} + 4 q^{21}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(71\) \( +1 \)
\(149\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

Twists of this newform have not been computed.